Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(7): 073501, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068087

RESUMO

The diagnosis of the fuel retention and impurity deposition on the plasma facing components (PFCs) is very important for monitoring plasma-wall interactions and improving the performance of long-pulse operation for tokamak devices. In this study, a remote in situ laser-induced breakdown spectroscopic (RIS-LIBS) system has been developed to be an effective and routine method for the diagnosis of the composition of the PFCs on Experimental Advanced Superconducting Tokamak (EAST). The RIS-LIBS system can be operated between EAST discharges via a remote network control system. This allows a flexible diagnosis for the PFCs at a specific EAST discharge operation or under planned plasma scenarios according to the experimental requirement. Measurements on the fuel retention and impurity deposition of the PFCs have been performed for the test of the RIS-LIBS system, and the depth resolution and the lateral resolution of the RIS-LIBS system have been achieved to be ∼100 nm and ∼3.0 mm, respectively. For the test of detectable elements, the fuel (deuterium) and impurities have been detected and identified clearly. In addition, the measurement of fuel abundance on the first wall as a function of the days of EAST deuterium plasma discharges has been carried out for the first time. These results well manifest a significant prospect of the RIS-LIBS for the diagnosis of the PFCs in the upcoming fusion devices like China Fusion Engineering Test Reactor (CFETR) and ITER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...