Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 287: 154051, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481898

RESUMO

BACKGROUND: Nitrogen nutrition is strongly associated with crop growth and development. Nitrogen application level affects leaf size as well as nitrogen content and distribution, and thus affects photosynthetic nitrogen-use efficiency (PNUE) and yield. In this study, soybean varieties "Jinyuan 55" and "Keshan 1" were treated with nitrogen as urea at: N0, 0 kg hm-2; N0.5, 60 kg hm-2; N1, 120 kg hm-2; and N1.5, 180 kg hm-2. We compared the effect of nitrogen level on plant morphology, biomass, photosynthetic physiology, nitrogen distribution, PNUE, and other soybean seedling leaf characteristics. RESULTS: Maximum carboxylation and electron transfer, net photosynthetic rates, and PNUE of both soybean varieties showed initial significant increases with increasing nitrogen application rate and subsequent stabilization. PNUE, carboxylation system components, electron transport components, and non-photosynthetic system distribution ratios in the photosynthetic system increased and subsequently decreased with increased nitrogen application rate. The nitrogen ratio between carboxylation and electron transport systems was positively correlated with PNUE in both soybean varieties. The nitrogen ratio in light-harvesting and non-photosynthetic systems showed a linear negative correlation with PNUE. CONCLUSIONS: Overall, an appropriate nitrogen level maintained a high photosynthetic nitrogen ratio, whereas low- or high-nitrogen conditions increased or decreased the nitrogen ratio in non-photosynthetic and photosynthetic systems, respectively, thus decreasing the PNUE and photosynthetic capacity. Moreover, increased nitrogen application rate led to a decreased nitrogen ratio in the light-harvesting system and an increased nitrogen ratio of electron transport and carboxylation systems. Our results provide a theoretical basis for optimizing leaf nitrogen distribution, determining optimum nitrogen levels, and promoting soybean seedling growth.


Assuntos
Nitrogênio , Plântula , Glycine max , Fotossíntese/fisiologia , Biomassa , Folhas de Planta
2.
Exp Ther Med ; 23(6): 389, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35495602

RESUMO

Water-soluble polysaccharide isolated from soybean hull and fractionated using ion-exchange chromatography were investigated to determine their molecular characteristics and immunostimulating activity. In the present study, soybean hull polysaccharide (SHP) was separated and purified to obtain three main fractions (F1, F2 and F3), and their chemical and monosaccharide compositions were analyzed. SHP was mainly composed of carbohydrates (64.3%), proteins (16.2%) and sulfates (12.5%), with minor levels of uronic acid (3.2%), and predominantly contained glucose and mannose as monosaccharides. Moreover, when compared with cells treated with RPMI medium, SHP was revealed to promote the proliferation and pinocytosis of RAW264.7 cells, and to enhance the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6. Furthermore, flow cytometry demonstrated that CD11b and CD40 were involved in the immune regulation of RAW264.7 cells by SHP. Moreover, western blotting and other experiments revealed that SHP, a type of pathogen-associated molecular pattern, was specifically recognized by the Toll-like receptor 2, which, in turn, upregulated the expression levels of proteins downstream of the mitogen-activated protein kinase and nuclear factor κB pathways. Notably, the immune activity of the F2 fraction was markedly higher than that of the crude polysaccharides. In summary, the purified F2 fraction of SHP may be an effective nutritional supplement for human disorders associated with low immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...