Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38472896

RESUMO

The hardness of passion fruit is a critical feature to consider when determining maturity during post-harvest storage. The capacity of near-infrared diffuse reflectance spectroscopy (NIRS) for non-destructive detection of outer and inner hardness of passion fruit epicarp was investigated in this work. The passion fruits' spectra were obtained using a near-infrared spectrometer with a wavelength range of 10,000-4000 cm-1. The hardness of passion fruit's outer epicarp (F1) and inner epicarp (F2) was then measured using a texture analyzer. Moving average (MA) and mean-centering (MC) techniques were used to preprocess the collected spectral data. Competitive adaptive reweighted sampling (CARS), successive projection algorithm (SPA), and uninformative variable elimination (UVE) were used to pick feature wavelengths. Grid-search-optimized random forest (Grids-RF) models and genetic-algorithm-optimized support vector regression (GA-SVR) models were created as part of the modeling process. After MC preprocessing and CARS selection, MC-CARS-Grids-RF model with 7 feature wavelengths had the greatest prediction ability for F1. The mean square error of prediction set (RMSEP) was 0.166 gN. Similarly, following MA preprocessing, the MA-Grids-RF model displayed the greatest predictive performance for F2, with an RMSEP of 0.101 gN. When compared to models produced using the original spectra, the R2P for models formed after preprocessing and wavelength selection improved. The findings showed that near-infrared spectroscopy may predict the hardness of passion fruit epicarp, which can be used to identify quality during post-harvest storage.

2.
Nano Lett ; 24(8): 2544-2552, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349341

RESUMO

Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.


Assuntos
Pontos Quânticos , Viroses , Vírus , Humanos , Envelope Viral/metabolismo , Proteínas do Envelope Viral
3.
Res Vet Sci ; 170: 105185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422838

RESUMO

Outer membrane vesicles (OMVs) are soluble mediators secreted by Gram-negative bacteria that are involved in communication. They can carry a variety of harmful molecules, which induce cytotoxic responses and inflammatory reactions in the absence of direct host cell-bacterium interactions. We previously reported the isolation of OMVs from avian pathogenic Escherichia coli (APEC) culture medium by ultracentrifugation, and characterized them as a substance capable of inducing the production of pro-inflammatory cytokines and causing tissue damage. However, the specific mechanisms by which APEC-secreted OMVs activate host cell death signaling and inflammation are poorly understood. Here, we show that OMVs are involved in the pathogenesis of APEC disease. In an APEC/chicken macrophage (HD11) coculture system, APEC significantly promoted HD11 cell death and inflammatory responses by secreting OMVs. Using western blotting analysis and specific pathway inhibitors, we demonstrated that the induction of HD11 death by APEC OMVs is associated with the activation of receptor interacting serine/threonine kinase 1 (RIPK1)-, receptor interacting serine/threonine kinase 3 (RIPK3)-, and mixed lineage kinase like pseudokinase (MLKL)-induced necroptosis. Notably, necroptosis inhibitor-1 (Nec-1), an RIPK1 inhibitor, reversed these effects. We also showed that APEC OMVs promote the activation of the NF-κB signaling pathway, leading to the phosphorylation of IκB-α and p65, the increased nuclear translocation of p65, and the significant upregulation of interleukin 1ß (IL-1ß) and IL-6 transcription. Importantly, APEC OMVs-induced IL-1ß and IL-6 mRNA expression and the activation of the NF-κB signaling pathway were similarly significantly inhibited by a RIPK1-specific inhibitor. Based on these findings, we have established that RIPK1 plays a dual role in HD11 cells necroptosis and the proinflammatory cytokine (IL-1ß and IL-6) expression induced by APEC OMVs. RIPK1 mediated the induction of necroptosis and the activation of the NF-κB in HD11 cells via APEC OMVs. The results of this study provide a basis for further investigation of the contribution of OMVs to the pathogenesis of APEC.


Assuntos
Membrana Externa Bacteriana , Escherichia coli , NF-kappa B , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Galinhas/metabolismo , Citocinas , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Inflamação/patologia , Inflamação/veterinária , Interleucina-6 , Macrófagos/metabolismo , Macrófagos/microbiologia , NF-kappa B/metabolismo , Serina , Transdução de Sinais , Membrana Externa Bacteriana/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
4.
Protoplasma ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342804

RESUMO

Dehydrins proteins accumulate and play important protective roles in most plants during abiotic stresses. The objective of this study was to characterize a YSK2-type dehydrin gene, WDHN2, isolated from Triticum aestivum previously. In this work, wheat dehydrin WDHN2 was expressed in Escherichia coli and purified by immobilized metal affinity chromatography, which exhibited as a single band by sodium dodecyl sulfonate polyacrylamide gel electrophoresis and western blotting. We show that WDHN2 is capable of alleviating lactate dehydrogenase inactivation from heat and desiccation in vitro enzyme activity protection assay. In vivo assay of Escherichia coli viability demonstrates the enhancement of cell survival by the overexpression of WDHN2. The protein aggregation prevention assay explores that WDHN2 has a broad protective effect on the cellular proteome. The results show that WDHN2 is mainly accumulated in the nucleus and cytosol, suggesting that this dehydrin may exert its function in both cellular compartments. Our data suggest that WDHN2 acts as a chaperone molecular in vivo.

5.
ACS Nano ; 18(5): 4507-4519, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38270127

RESUMO

Exosomes play an important role in the spread of viral infections and immune escape. However, the exact ability and mechanisms by which exosomes produced during viral infections (vExos) infect host cells are still not fully understood. In this study, we developed a dual-color exosome labeling strategy that simultaneously labels the external and internal structures of exosomes with quantum dots to enable in situ monitoring of the transport process of vExos in live cells using the single-particle tracking technique. Our finding revealed that vExos contains the complete influenza A virus (IAV) genome and viral ribonucleoprotein complexes (vRNPs) proteins but lacks viral envelope proteins. Notably, these vExos have the ability to infect cells and produce progeny viruses. We also found that vExos are transported in three stages, slow-fast-slow, and move to the perinuclear region via microfilaments and microtubules. About 30% of internalized vExos shed the external membrane and release the internal vRNPs into the cytoplasm by fusion with endolysosomes. This study suggested that vExos plays a supporting role in IAV infection by assisting with IAV propagation in a virus-independent manner. It emphasizes the need to consider the infectious potential of vExos and draws attention to the potential risk of exosomes produced by viral infections.


Assuntos
Exossomos , Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Humanos , Exossomos/metabolismo , Endossomos/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
6.
World J Clin Cases ; 11(29): 7136-7143, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37946783

RESUMO

BACKGROUND: Mucoepidermoid carcinoma of the lung is a rare malignant tumor, accounting for 0.1%-0.2% of all lung malignancies. It is a primary salivary gland tumor of the lung. Surgical resection is the primary treatment for pulmonary mucoepidermoid carcinoma, for which there has been no standardized treatment strategy. This article reports a case of a young woman with pulmonary mucoepidermoid carcinoma with hemoptysis as the first symptom. CASE SUMMARY: A 24-year-old female patient presented with "4 d of hemoptysis" as the chief complaint. She had no special history and denied any smoking or drinking history. Physical examination revealed that the vital signs were stable and scattered small wet rales were heard in the left lung. After admission, the lung tumor markers were checked, and no abnormalities were found. After completing the bronchoscopy, a spherical lesion was observed at the main bronchus 1.5 cm away from the protubercle, with obvious pulsation and little blood seepage on the surface, and histopathological biopsy results showed acute and chronic inflammation. She was transferred to the Department of Thoracic Surgery for surgical treatment on the 16th day after admission. After exclusion of surgical conjunctures, the patient underwent resection of the tumor in the left main bronchus with single-pore video-assisted thoracic surgery on the 19th day after admission. The postoperative histopathological biopsy results showed mucoepidermoid carcinoma of the lung. The patient and her family refused to complete genetic testing and she was discharged from the hospital on the 8th day after surgery. During the follow-up period, the patient experienced shortness of breath after feeling active and had no special discomfort. CONCLUSION: We have documented a case of moderately differentiated mucoepidermoid lung cancer with hemoptysis as the first symptom to improve clinicians' understanding of the disease and provide a new dimension of thinking for its future diagnosis and treatment.

7.
Arch Microbiol ; 206(1): 3, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991548

RESUMO

Psoriasis is one of the common chronic inflammatory skin diseases worldwide. The skin microbiota plays a role in psoriasis through regulating skin homeostasis. However, the studies on the interactions between symbiotic microbial strains and psoriasis are limited. In this study, Staphylococcus strain XSB102 was isolated from the skin of human, which was identified as Staphylococcus warneri using VITEK2 Compact. To reveal the roles of Staphylococcus warneri on psoriasis, XSB102 were applied on the back of imiquimod-induced psoriasis-like dermatitis mice. The results indicated that it exacerbated the psoriasis and significantly increased the thickening of the epidermis. Furthermore, in vitro experiments confirmed that inactivated strain XSB102 could promote the proliferation of human epidermal keratinocytes (HaCaT) cell. However, real-time quantitative PCR and immunofluorescence results suggested that the expression of inflammatory factors such as IL-17a, IL-6, and so on were not significantly increased, while extracellular matrix related factors such as Col6a3 and TGIF2 were significantly increased after XSB102 administration. This study indicates that Staphylococcus warneri XSB102 can exacerbate psoriasis and promote keratinocyte proliferation independently of inflammatory factors, which paves the way for further exploration of the relationship between skin microbiota and psoriasis.


Assuntos
Dermatite , Psoríase , Camundongos , Humanos , Animais , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Psoríase/induzido quimicamente , Psoríase/metabolismo , Pele , Queratinócitos/metabolismo , Staphylococcus/genética , Proliferação de Células , Dermatite/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/efeitos adversos , Proteínas de Homeodomínio/metabolismo
8.
J Food Sci ; 88(10): 4180-4193, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37655508

RESUMO

Accurate classification and identification of chicken parts are critical to improve the productivity and processing speed in poultry processing plants. However, the overlapping of chicken parts has an impact on the effectiveness of the identification process. To solve this issue, this study proposed a real-time classification and detection method for chicken parts, utilizing YOLOV4 deep learning. The method can identify segmented chicken parts on the assembly line in real time and accurately, thus improving the efficiency of poultry processing. First, 600 images containing multiple chicken part samples were collected to build a chicken part dataset after using the image broadening technique, and then the dataset was divided according to the 6:2:2 division principle, with 1200 images as the training set, 400 images as the test set, and 400 images as the validation set. Second, we utilized the single-stage target detector YOLO to predict and calculate the chicken part images, obtaining the categories and positions of the chicken leg, chicken wing, and chicken breast in the image. This allowed us to achieve real-time classification and detection of chicken parts. This approach enabled real-time and efficient classification and detection of chicken parts. Finally, the mean average precision (mAP) and the processing time per image were utilized as key metrics to evaluate the effectiveness of the model. In addition, four other target detection algorithms were introduced for comparison with YOLOV4-CSPDarknet53 in this study, which include YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16. A comprehensive comparison test was conducted to assess the classification and detection performance of these models for chicken parts. Finally, for the chicken part dataset, the mAP of the YOLOV4-CSPDarknet53 model was 98.86% on a single image with an inference speed of 22.2 ms, which was higher than the other four models of YOLOV3-Darknet53, YOLOV3-MobileNetv3, SSD-MobileNetv3, and SSD-VGG16 mAP by 3.27%, 3.78%, 6.91%, and 6.13%, respectively. The average detection time was reduced by 13, 1.9, 6.2, and 20.3 ms, respectively. In summary, the chicken part classification and detection method proposed in this study offers numerous benefits, including the ability to detect multiple chicken parts simultaneously, as well as delivering high levels of accuracy and speed. Furthermore, this approach effectively addresses the issue of accurately identifying individual chicken parts in the presence of occlusion, thereby reducing waste on the assembly line. PRACTICAL APPLICATION: The aim of this study is to offer visual technical assistance in minimizing wastage and resource depletion during the sorting and cutting of chicken parts in poultry production and processing facilities. Furthermore, considering the diverse demands and preferences regarding chicken parts, this research can facilitate product processing that caters specifically to consumer preferences.


Assuntos
Aprendizado Profundo , Animais , Algoritmos , Movimento Celular , Velocidade de Processamento
9.
Vet Res ; 54(1): 70, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644523

RESUMO

APEC encodes multiple virulence factors that have complex pathogenic mechanisms. In this study, we report a virulence factor named EspE3, which can be secreted from APEC. This protein was predicted to have a leucine-rich repeat domain (LRR) and may have a similar function to IpaH class effectors of the type III secretion system (T3SS). For further exploration, the regulatory correlation between the espE3 and ETT2 genes in APEC was analysed. We then assessed the pathogenicity of EspE3, detected it in APEC secretion proteins and screened the proteins of EspE3 that interact with chicken trachea epithelial cells. This study provides data on a new virulence factor for further exploring the pathogenic mechanism of APEC.


Assuntos
Galinhas , Fatores de Virulência , Animais , Virulência , Fatores de Virulência/genética , Transporte Biológico , Escherichia coli/genética
10.
Int Immunopharmacol ; 121: 110480, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343370

RESUMO

Interleukin-33(IL-33), is constitutively expressed in the epithelial cells of the skin. It has been reported that IL-33 contributed to the severity of the disease in psoriasis-like mouse models. In the current study, we evaluated the effect of anti-IL-33 antibody (Ab) in imiquimod-induced psoriatic dermatitis in mice. Our observations showed that anti-IL-33 Ab ameliorated the erythema, scaling, epidermal thickness and spleen index. Additionally, we found anti-IL-33 Ab significantly decreased the expression of psoriasis-related cytokines. Moreover, anti-IL-33 Ab significantly reduced Ki-67 positive cells, CD3+CD4+T cells, and CD3+CD8+T cells in the skin lesions. Furthermore, anti-IL-33 Ab treatment down-regulated the expression of phosphorylation of STAT3 and IL-33 in model mouse. These results indicated that the anti-IL-33 Ab alleviated the seriousness of skin lesions, inhibited the activation of the STAT3, lymphocyte infiltration and the secretion of pro-inflammatory cytokines in imiquimod-induced psoriatic dermatitis in mice, suggesting IL-33 may be a therapeutic target for the treatment of psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Imiquimode/farmacologia , Interleucina-33/metabolismo , Pele/patologia , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Dermatite/patologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
11.
Foods ; 12(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174438

RESUMO

As living standards rise, people have higher requirements for the quality of duck eggs. The quality of duck eggs is related to their origin. Thus, the origin traceability and identification of duck eggs are crucial for protecting the rights and interests of consumers and preserving food safety. As the world's largest producer and consumer of duck eggs, China's duck egg market suffers from a severe lack of duck egg traceability and rapid origin identification technology. As a result, a large number of duck eggs from other regions are sold as products from well-known brands, which seriously undermines the rights and interests of consumers and is not conducive to the sound development of the duck egg industry. To address the above issues, this study collected visible/near-infrared spectral data online from duck eggs of three distinct origins. To reduce noise in the spectral data, various pre-processing algorithms, including MSC, SNV, and SG, were employed to process the spectral data of duck eggs in the range of 400-1100 nm. Meanwhile, CARS and SPA were used to select feature variables that reflect the origin of duck eggs. Finally, classification models of duck egg origin were developed based on RF, SVM, and CNN, achieving the highest accuracy of 97.47%, 98.73%, and 100.00%, respectively. To promote the technology's implementation in the duck egg industry, an online sorting device was built for duck eggs, which mainly consists of a mechanical drive device, spectral software, and a control system. The online detection performance of the machine was validated using 90 duck eggs, and the final detection accuracy of the RF, SVM, and CNN models was 90%, 91.11%, and 94.44%, with a detection speed of 0.1 s, 0.3 s, and 0.5 s, respectively. These results indicate that visible/near-infrared spectroscopy can be exploited to realize rapid online detection of the origin of duck eggs, and the methodologies used in this study can be immediately implemented in production practice.

12.
Vet Microbiol ; 283: 109775, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37210862

RESUMO

Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis and leads to high mortality in poultry and huge economic losses. Therefore, it is important to investigate the pathogenic mechanisms of APEC. Outer membrane protein OmpW is involved in the environmental adaptation and pathogenesis of Gram-negative bacteria. OmpW is regulated by many proteins, including FNR, ArcA, and NarL. In previous studies, regulator EtrA is involved in the pathogenicity of APEC and affects the transcript levels of ompW. However, the function of OmpW in APEC and its regulation remain unclear. In this study, we constructed mutant strains with altered etrA and/or ompW genes to evaluate the roles of EtrA and OmpW in the biological characteristics and pathogenicity of APEC. Compared with wild-type strain AE40, mutant strains ∆etrA, ∆ompW, and ∆etrA∆ompW showed significantly lower motility, lower survival under external environmental stress, and lower resistance to serum. Biofilm formation by ∆etrA and ∆etrA∆ompW was significantly enhanced relative to that of AE40. The transcript levels of TNF-α, IL1ß, and IL6 were also significantly enhanced in DF-1 cells infected with these mutant strains. Animal infection assays showed that deletion of etrA and ompW genes attenuated the virulence of APEC in chick models, and damage to the trachea, heart, and liver caused by these mutant strains was attenuated relative to that caused by the wild-type strain. RT-qPCR and ß-galactosidase assay showed that EtrA positively regulates the expression of the ompW gene. These findings demonstrate that regulator EtrA positively regulates the expression of OmpW, and that they both contribute to APEC motility, biofilm formation, serum resistance, and pathogenicity.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/fisiologia , Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Galinhas , Doenças das Aves Domésticas/microbiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/metabolismo
13.
Adv Sci (Weinh) ; 10(7): e2205566, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599707

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.


Assuntos
Vesículas Extracelulares , MicroRNAs , MicroRNAs/análise , Células Endoteliais , Vesículas Extracelulares/química , Comunicação Celular , Endocitose
14.
Poult Sci ; 102(2): 102388, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586294

RESUMO

EnvZ, the histidine kinase (HK) of OmpR/EnvZ, transduces osmotic signals in Escherichia coli K12 and affects the pathogenicity of Shigella flexneri and Vibrio cholera. Avian pathogenic E. coli (APEC) is an extra-intestinal pathogenic E. coli (ExPEC), causing acute and sudden death in poultry and leading to severe economic losses to the global poultry industry. How the functions of EnvZ correlate with APEC pathogenicity was still unknown. In this study, we successfully constructed the envZ mutant strain AE17ΔenvZ and the inactivation of envZ significantly reduced biofilms and altered red, dry, and rough (rdar) morphology. In addition, AE17ΔenvZ was significantly less resistant to acid, alkali, osmotic, and oxidative stress conditions. Deletion of envZ significantly enhanced sensitivity to specific pathogen-free (SPF) chicken serum and increased adhesion to chicken embryonic fibroblast DF-1 cells and elevated inflammatory cytokine IL-1ß, IL6, and IL8 expression levels. Also, when compared with the WT strain, AE17ΔenvZ attenuated APEC pathogenicity in chickens. To explore the molecular mechanisms underpinning envZ in APEC17, we compared the WT and envZ-deletion strains using transcriptome analyses. RNA-Seq results identified 711 differentially expressed genes (DEGs) in the envZ mutant strain and DEGs were mainly enriched in outer membrane proteins, stress response systems, and TCSs. Quantitative real-time reverse transcription PCR (RT-qPCR) showed that EnvZ influenced the expression of biofilms and stress responses genes, including ompC, ompT, mlrA, basR, hdeA, hdeB, adiY, and uspB. We provided compelling evidence showing EnvZ contributed to APEC pathogenicity by regulating biofilms and stress response expression.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/fisiologia , Histidina Quinase/metabolismo , Virulência , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecções por Escherichia coli/veterinária , Galinhas/metabolismo , Biofilmes , Proteínas da Membrana Bacteriana Externa/metabolismo , Complexos Multienzimáticos/metabolismo
15.
Res Vet Sci ; 153: 144-152, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375381

RESUMO

Avian pathogenic Escherichia coli (APEC) causes persistent infection of poultry and multi-system diseases, which seriously endanger the development of the poultry industry. Biofilm allows bacteria to adapt to the natural environment and plays an important role in resistance to the external environment and the pathogenicity of APEC, but the mechanism of its formation and regulatory network have not been clarified. In this study, we used a Tn5 transposon random mutation library constructed with APEC and identified ydiF, a gene that has not previously been recognized in E. coli biofilm formation. To confirm that the ydiF gene really can regulate the formation of APEC biofilm, the ydiF gene deletion strain was constructed using APEC81. Protein association networks prediction results show that ydiF is mainly associated with genes related to the metabolism of sugars and fatty acids. Deletion of the ydiF gene significantly reduces the formation of APEC biofilm and scanning electron microscopy indicated that the degree of adhesion between the bacteria was also reduced. The deletion of the ydiF gene also significantly reduced the motility of APEC81 and through transmission electron microscopy APEC81 was observed to have significantly fewer flagella. However, the colony morphology of APEC81 on Congo red and Coomassie brilliant blue media was unaffected. The results of fluorescence quantification showed that the deletion of the ydiF gene caused a down-regulation in the transcription of genes related to the second messenger, sugar metabolism, and quorum sensing. These results indicate that ydiF plays an important role in biofilm formation and the movement of APEC. In addition, it may be possible to regulate the formation of APEC biofilms by different methods such as by regulating the second messenger and metabolic system.

16.
Indian J Dermatol ; 67(2): 204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092198

RESUMO

Background: Psoriasis is a chronic skin disease characterized by hyperproliferation of keratinocytes and increased inflammation. Previous studies have detected the levels of cytokines in the serum of patients with psoriasis, yet few multi-cytokine combination studies have been reported. Objective: The aim of the study was to compare the levels of cytokines in the serum between patients with psoriasis and healthy controls, elucidate which factors influence the psoriasis progression. Methods: A total of 39 psoriasis patients and 30 healthy volunteers were enrolled. The venous blood was collected and the levels of 13 inflammatory cytokines were measured by human inflammation panel 1 kit. The severity of the disease was determined according to the psoriasis area and severity index (PASI) score. Results: Compared with healthy controls, the levels of nine cytokines (IFN-γ, TNF-α, IL-1ß, IL-6, IL-10, IL-12P40, IL-18, IL-17A and IL-23) were significantly increased, while the level of MCP-1 decreased in psoriatic patients. In addition, except for MCP-1, IL-10 and IL-12P40, these cytokine levels were positively correlated with the PASI score. Furthermore, there were higher serum lever of IFN-γ, TNF-α, IL-1ß, IL-6, IL-17A, IL-18 and IL-23 in active psoriasis than healthy controls and retrograde psoriasis. Conclusions: Increased serum levels of IFN-γ, TNF-α, IL-1ß, IL-6, IL-17A, IL-18 and IL-23 in psoriatic patients were associated with PASI and the stage of disease, which suggested that these cytokines play an important role in the pathogenesis of psoriasis. The detection of these cytokines can better observe the disease activity of psoriasis and optimize the treatment strategy.

17.
J Fungi (Basel) ; 8(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887495

RESUMO

Bitter rot and Glomerella leaf spot (GLS) of apples, caused by Colletotrichum species, are major diseases of apples around the world. A total of 98 isolates were obtained from apple fruits with bitter rot, and 53 isolates were obtained from leaves with leaf spot in the primary apple production regions in China. These isolates were characterized morphologically, and five gene regions (ITS, ACT, GAPDH, CHS-1 and TUB2) were sequenced for each isolate. A phylogenetic analysis, combined with a comparison of the morphological, cultural and pathogenic characters, sorted bitter rot isolates into six species: C. alienum, C. fructicola, C. gloeosporioides sensu stricto, C. nymphaeae, C. siamense and one new species, C. orientalis Dandan Fu & G.Y. Sun. Among these, C. siamense was the predominant pathogen associated with bitter rot. Isolates from leaf spot were identified as two species, C. aenigma and C. fructicola. This is the first report of C. orientalis as an apple bitter rot pathogen worldwide, and the results provide important insights into the diversity of Colletotrichum species in China.

18.
Planta ; 256(3): 46, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867182

RESUMO

MAIN CONCLUSION: ΔClnps6 induced iron redistribution in maize B73 leaf cells and resulted in reactive oxygen species (ROS) burst to enhance plant resistance against Curvularia lunata. Iron is an indispensable co-factor of various crucial enzymes that are involved in cellular metabolic processes and energy metabolism in eukaryotes. For this reason, plants and pathogens compete for iron to maintain their iron homeostasis, respectively. In our previous study, ΔClnps6, the extracellular siderophore biosynthesis deletion mutant of Curvularia lunata, was sensitive to exogenous hydrogen peroxide and virulence reduction. However, the mechanism was not studied. Here, we report that maize B73 displayed highly resistance to ΔClnps6. The plants recruited more iron at cell wall appositions (CWAs) to cause ROS bursts. Intracellular iron deficiency induced by iron redistribution originated form up-regulated expression of genes involved in intracellular iron consumption in leaves and absorption in roots. The RNA-sequencing data also showed that the expression of respiratory burst oxidase homologue (ZmRBOH4) and NADP-dependent malic enzyme 4 (ZmNADP-ME4) involved in ROS production was up-regulated in maize B73 after ΔClnps6 infection. Simultaneously, jasmonic acid (JA) biosynthesis genes lipoxygenase (ZmLOX), allene oxide synthase (ZmAOS), GA degradation gene gibberellin 2-beta-dioxygenase (ZmGA2OX6) and ABA degradation genes abscisic acid hydroxylase (ZmABH1, ZmABH2) involved in iron homeostasis were up-regulated expression. Ferritin1 (ZmFER1) positive regulated maize resistance against C. lunata via ROS burst under Fe-limiting conditions. Overall, our results showed that iron played vital roles in activating maize resistance in B73-C. lunata interaction.


Assuntos
Doenças das Plantas , Zea mays , Curvularia , Ferro/metabolismo , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Zea mays/genética , Zea mays/metabolismo
19.
Res Vet Sci ; 152: 10-19, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35901637

RESUMO

Avian pathogenic Escherichia coli (APEC) can cause the acute and sudden death of poultry, which leads to serious economic losses in the poultry industry. Biofilm formation contributes to the persistence of bacterial infection, drug resistance, and resistance to diverse environmental stress. Many transcription regulators in APEC play an essential role in the formation of biofilm and could provide further insights into APEC pathogenesis. YjjQ has an important role in the pathogenicity of bacteria by regulating the expression of virulence factors, such as flagellar and iron uptake. However, YjjQ regulates other virulence factors, and their role in the overall regulatory network is unclear. Here, we further evaluate the function of YjjQ on APEC biofilm formation and motility. In this study, we successfully constructed mutant (AE27∆yjjQ) and complement (AE27ΔyjjQ-comp) strains of the wild-type strain AE27. Inactivation of the yjjQ gene significantly increased biofilm-forming ability in APEC. Scanning electron microscopy showed that the biofilm formation of the AE27 was single-layered and flat, whereas that of the AE27∆yjjQ had a porous three-dimensional structure. Moreover, the deletion of the yjjQ gene inhibited the motility of APEC. RNA-sequencing was used to further investigate the regulatory mechanism of YjjQ in APEC. The results indicate that YjjQ regulates biofilm formation and flagellar genes in AE27∆yjjQ. RT-qPCR shows that YjjQ affects the transcriptional levels of genes, including flagella genes (flhD, flhC and flgE), and biofilm formation genes (pstA, uhpC, nikD, and ygcS). These results confirm that the transcription regulator YjjQ is involved in APEC biofilm formation and motility, and provide new evidence for the prevention and control of APEC.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Animais , Biofilmes , Galinhas/metabolismo , Escherichia coli/fisiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças das Aves Domésticas/microbiologia , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética
20.
Animals (Basel) ; 12(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35565586

RESUMO

Avian pathogenic Escherichia coli (APEC) is one of the most common pathogens in poultry and a potential gene source of human extraintestinal pathogenic E. coli (ExPEC), leading to serious economic losses in the poultry industry and public health concerns. Exploring the pathogenic mechanisms underpinning APEC and the identification of new targets for disease prevention and treatment are warranted. YgeK is a transcriptional regulator in APEC and is localized to the type III secretion system 2 of E. coli. In our previous work, the transcription factor ygeK significantly affected APEC flagella formation, bacterial motility, serum sensitivity, adhesion, and virulence. To further explore ygeK functions, we evaluated its influence on APEC biofilm formation and resistance to environmental stress. Our results showed that ygeK inactivation decreased biofilm formation and reduced bacterial resistance to environmental stresses, including acid and oxidative stress. In addition, the multi-level regulation of ygeK in APEC was analyzed using proteomics, and associations between differentially expressed proteins and the key targets of ygeK were investigated. Overall, we identified ygeK's new function in APEC. These have led us to better understand the transcriptional regulatory ygeK and provide new clues about the pathogenicity of APEC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...