Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338758

RESUMO

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Phytoremediation ; 15(3): 219-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23488008

RESUMO

Experiments were conducted to investigate and control pollutant emission from incineration of Sedum plumbizincicola plants on a laboratory scale using an entrained flow tube furnace. Without control technologies, the flue gas contained 0.101 mg Nm(-3) of Cd, 46.4 mg Nm(-3) of Zn, 553 mg Nm(-3) of NOx, 131 pg Nm(-3) of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/Fs) and 35.4 mg Nm(-3) of polycyclic aromatic hydrocarbons (PAHs). In pollutants control experiments. Al2O3, CaO, and kaolin were compared as adsorbents and activated carbon was used as an end-of-pipe method for the capture of pollutants. Kaolin, the most effective of the three adsorbents, removed 91.2% of the Cd in flue gas. While 97.6% of the Cd and 99.6% of the PAHs were removed by activated carbon. Incineration may therefore be regarded as a viable option for the safe disposal of the biomass of the zinc and cadmium hyperaccumulator species S. plumbizincicola.


Assuntos
Poluição do Ar/prevenção & controle , Gases/química , Incineração/instrumentação , Metais Pesados/química , Sedum/química , Poluentes Atmosféricos/química , Óxido de Alumínio/química , Benzofuranos/química , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Compostos de Cálcio/química , Carvão Vegetal/química , Cinza de Carvão/química , Dibenzofuranos Policlorados , Temperatura Alta , Incineração/métodos , Caulim/química , Metais Pesados/metabolismo , Óxidos de Nitrogênio/química , Óxidos/química , Dibenzodioxinas Policloradas/análogos & derivados , Dibenzodioxinas Policloradas/química , Hidrocarbonetos Policíclicos Aromáticos/química , Sedum/metabolismo , Poluentes do Solo/metabolismo , Zinco/metabolismo
3.
Environ Sci Pollut Res Int ; 19(5): 1605-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22134861

RESUMO

BACKGROUND: A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. RESULTS: Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Fertilizantes , Medicago sativa , Poluentes do Solo/metabolismo , Amônia/análise , Benzo(a)pireno/farmacocinética , Biomassa , Concentração de Íons de Hidrogênio , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Nitratos/análise , Nitrogênio/análise , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/farmacocinética
4.
J Hazard Mater ; 186(2-3): 1271-6, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21177027

RESUMO

Microbe-assisted phytoremediation is emerging as one of the most effective means by which plants and their associated rhizosphere microbes degrade organic contaminants in soils. A pot study was conducted to examine the effects of inoculation with Rhizobium meliloti on phytoremediation by alfalfa grown for 90 days in an agricultural soil contaminated with weathered polycyclic aromatic hydrocarbons (PAHs). Planting with uninoculated alfalfa (P) and alfalfa inoculated with R. meliloti (PR) significantly lowered the initial soil PAH concentrations by 37.2 and 51.4% respectively compared with unplanted control soil. Inoculation with R. meliloti significantly increased the counts of culturable PAH-degrading bacteria, soil microbial activity and the carbon utilization ability of the soil microbial community. The results suggest that the symbiotic association between alfalfa and Rhizobium can stimulate the rhizosphere microflora to degrade PAHs and its application may be a promising bioremediation strategy for aged PAH-contaminated soils.


Assuntos
Recuperação e Remediação Ambiental/métodos , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sinorhizobium meliloti/metabolismo , Poluentes do Solo/análise , Carga Bacteriana , Biomassa , Sinorhizobium meliloti/enzimologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...