Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37313399

RESUMO

Background: Animal models using intratracheal instillation show that elastase, unopposed by α1-antitrypsin (AAT), causes alveolar damage and haemorrhage associated with emphysematous changes. The aim of the present study was to characterise any relationship between alveolar haemorrhage and human AAT deficiency (AATD) using bronchoalveolar lavage (BAL) and lung explant samples from AATD subjects. Methods: BAL samples (17 patients, 15 controls) were evaluated for free haem (iron protoporphyrin IX) and total iron concentrations. Alveolar macrophage activation patterns were assessed using RNA sequencing and validated in vitro using haem-stimulated, monocyte-derived macrophages. Lung explants (seven patients, four controls) were assessed for iron sequestration protein expression patterns using Prussian blue stain and ferritin immunohistochemistry, as well as ferritin iron imaging and elemental analysis by transmission electron microscopy. Tissue oxidative damage was assessed using 8-hydroxy-2'-deoxyguanosine immunohistochemistry. Results: BAL collected from AATD patients showed significantly elevated free haem and total iron concentrations. Alveolar and interstitial macrophages in AATD explants showed elevated iron and ferritin accumulation in large lysosomes packed by iron oxide cores with degraded ferritin protein cages. BAL macrophage RNA sequencing showed innate pro-inflammatory activation, replicated in vitro by haemin exposure, which also triggered reactive oxygen species generation. AATD explants showed massive oxidative DNA damage in both lung epithelial cells and macrophages. Conclusions: BAL and tissue markers of alveolar haemorrhage, together with molecular and cellular evidence of macrophage innate pro-inflammatory activation and oxidative damage, are consistent with free haem stimulation. Overall, this initial study provides evidence for a pathogenetic role of elastase-induced alveolar haemorrhage in AATD emphysema.

2.
Theranostics ; 12(11): 4980-4992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836806

RESUMO

Rationale: The biology of the pancreatic ductal adenocarcinoma (PDAC) is heterogenous, but how heterogenity of the tumor microenvironment contributes to disparate patient outcomes remains essentially unstudied. Methods: A strategy employing multiplex digital spatial profiling (mplxDSP) technology was employed to evaluate the nature and dynamics of microenvironment components including cancer associated fibroblasts (CAFs) and infiltrating immune cells at the single-cell level based upon their spatial relationship within the tumor. Results: We report that myofibroblasts directly adjacent to PDAC tumors comparatively overexpress genes (BATF3, IL12B, ITGB8, CD4 and IFNAR1), constructing pathways prone to stimulating an adaptive immune response. Markers of innate immune cells (Natural Killer cells, Dendritic Cells and macrophages) are predominant in CD45+ cells immediately adjacent to PDAC tumor, however, the checkpoint protein CTLA4 is also overwhelmingly expressed, fostering tolerance. Finaly, mRNA profiling of adjacent CAFs identified clusters of genes that correlate with survival. Conclusion: CAFs and leukocytes in close proximity to PDAC significantly differ from those remote from the tumor, providing insight into microenvironment influence on immune tolerance mediated through relative populations of leukocytes and subsets of CAFs and monocytes. mRNA expression profiling of CAFs adjacent to PDAC cells may hold promise for prognostication.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , RNA Mensageiro/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
3.
J Histochem Cytochem ; 67(1): 41-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771178

RESUMO

Islet microvasculature provides key architectural and functional roles, yet the morphological features of islets from patients with type 1 diabetes are poorly defined. We examined islet and exocrine microvasculature networks by multiplex immunofluorescence imaging of pancreases from organ donors with and without type 1 diabetes (n=17 and n=16, respectively) and determined vessel diameter, density, and area. We also analyzed these variables in insulin-positive and insulin-negative islets of 7 type 1 diabetes donors. Control islet vessel diameter was significantly larger (7.6 ± 1.1 µm) compared with vessels in diabetic islets (6.2 ± 0.8 µm; p<0.001). Control islet vessel density (number/islet) was significantly lower (5.3 ± 0.6) versus diabetic islets (9.3 ± 0.2; p<0.001). Exocrine vessel variables were not significantly different between groups. Islets with residual beta-cells were comparable to control islets for both vessel diameter and density and were significantly different from insulin-negative islets within diabetic donors (p<0.05). Islet smooth muscle actin area had a significant positive correlation with age in both groups (p<0.05), which could negatively impact islet transplantation efficiency from older donors. These data underscore the critical relationship of islet beta-cells and islet vessel morphology in type 1 diabetes. These studies provide new knowledge of the islet microvasculature in diabetes and aging.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Microvasos/patologia , Actinas/análise , Adolescente , Adulto , Criança , Feminino , Imunofluorescência/métodos , Humanos , Insulina/análise , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/ultraestrutura , Masculino , Microscopia Confocal/métodos , Microvasos/ultraestrutura , Doadores de Tecidos , Adulto Jovem
4.
J Natl Cancer Inst ; 111(7): 664-674, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423141

RESUMO

BACKGROUND: The LKB1 tumor suppressor gene is commonly inactivated in non-small cell lung carcinomas (NSCLC), a major form of lung cancer. Targeted therapies for LKB1-inactivated lung cancer are currently unavailable. Identification of critical signaling components downstream of LKB1 inactivation has the potential to uncover rational therapeutic targets. Here we investigated the role of INSL4, a member of the insulin/IGF/relaxin superfamily, in LKB1-inactivated NSCLCs. METHODS: INSL4 expression was analyzed using global transcriptome profiling, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay, and RNA in situ hybridization in human NSCLC cell lines and tumor specimens. INSL4 gene expression and clinical data from The Cancer Genome Atlas lung adenocarcinomas (n = 515) were analyzed using log-rank and Fisher exact tests. INSL4 functions were studied using short hairpin RNA (shRNA) knockdown, overexpression, transcriptome profiling, cell growth, and survival assays in vitro and in vivo. All statistical tests were two-sided. RESULTS: INSL4 was identified as a novel downstream target of LKB1 deficiency and its expression was induced through aberrant CRTC-CREB activation. INSL4 was highly induced in LKB1-deficient NSCLC cells (up to 543-fold) and 9 of 41 primary tumors, although undetectable in all normal tissues except the placenta. Lung adenocarcinomas from The Cancer Genome Atlas with high and low INSL4 expression (with the top 10th percentile as cutoff) showed statistically significant differences for advanced tumor stage (P < .001), lymph node metastasis (P = .001), and tumor size (P = .01). The INSL4-high group showed worse survival than the INSL4-low group (P < .001). Sustained INSL4 expression was required for the growth and viability of LKB1-inactivated NSCLC cells in vitro and in a mouse xenograft model (n = 5 mice per group). Expression profiling revealed INSL4 as a critical regulator of cell cycle, growth, and survival. CONCLUSIONS: LKB1 deficiency induces an autocrine INSL4 signaling that critically supports the growth and survival of lung cancer cells. Therefore, aberrant INSL4 signaling is a promising therapeutic target for LKB1-deficient lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Serina-Treonina Quinases/genética , Transcriptoma/genética , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Comunicação Autócrina/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Immunol ; 199(12): 3991-4000, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109122

RESUMO

Type 1 diabetes (T1D) has a strong genetic component. The insulin dependent diabetes (Idd)22 locus was identified in crosses of T1D-susceptible NOD mice with the strongly T1D-resistant ALR strain. The NODcALR-(D8Mit293-D8Mit137)/Mx (NOD-Idd22) recombinant congenic mouse strain was generated in which NOD mice carry the full Idd22 confidence interval. NOD-Idd22 mice exhibit almost complete protection from spontaneous T1D and a significant reduction in insulitis. Our goal was to unravel the mode of Idd22-based protection using in vivo and in vitro models. We determined that Idd22 did not impact immune cell diabetogenicity or ß cell resistance to cytotoxicity in vitro. However, NOD-Idd22 mice were highly protected against adoptive transfer of T1D. Transferred CTLs trafficked to the pancreatic lymph node and proliferated to the same extent in NOD and NOD-Idd22 mice, yet the accumulation of pathogenic CTLs in the islets was significantly reduced in NOD-Idd22 mice, correlating with disease resistance. Pancreatic endothelial cells from NOD-Idd22 animals expressed lower levels of adhesion molecules, even in response to inflammatory stimuli. Lower adhesion molecule expression resulted in weaker adherence of T cells to NOD-Idd22 endothelium compared with NOD-derived endothelium. Taken together, these results provide evidence that Idd22 regulates the ability of ß cell-autoreactive T cells to traffic into the pancreatic islets and may represent a new target for pharmaceutical intervention to potentially prevent T1D.


Assuntos
Quimiotaxia de Leucócito/genética , Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/patologia , Linfócitos T Citotóxicos/patologia , Transferência Adotiva , Animais , Autoimunidade/genética , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Quimiotaxia de Leucócito/fisiologia , Cruzamentos Genéticos , Testes Imunológicos de Citotoxicidade , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Resistência à Doença , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Camundongos SCID , Organismos Livres de Patógenos Específicos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante
6.
Methods Mol Biol ; 1639: 139-143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28752453

RESUMO

Immunohistochemistry (IHC) is a powerful immunology-based method that is used to study the location of proteins in cells and tissues. There have been numerous advancements in IHC technology that continually increase the sensitivity and specificity through which this method can be used to generate new discoveries. Similarly, Alpha-1 Antitrypsin (AAT) IHC can be used to study AAT protein expression within the human liver or exogenous AAT that is delivered through gene therapy. Here, we describe a highly sensitive method to detect the AAT antigen in formalin-fixed paraffin-embedded human or mouse tissues.


Assuntos
Imuno-Histoquímica/métodos , Coloração e Rotulagem , alfa 1-Antitripsina/metabolismo , Formaldeído , Humanos , Inclusão em Parafina
7.
Methods Mol Biol ; 1639: 145-149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28752454

RESUMO

Periodic Acid-Schiff (PAS) with diastase (PAS-D) refers to the use of the PAS stain in combination with diastase, which is an enzyme that digests the glycogen. The purpose of using the PAS-D procedure is to differentiate glycogen from other PAS-positive elements in tissue samples. The PAS-D method is also used for periportal liver staining of AAT polymer inclusions that are seen in alpha-1 antitrypsin deficiency disease. Here, we describe the procedure of PAS-D staining in formalin-fixed, paraffin-embedded human liver tissues.


Assuntos
Amilases/metabolismo , Ácido Periódico/metabolismo , Coloração e Rotulagem/métodos , Humanos , Fígado/citologia , Fígado/metabolismo , Inclusão em Parafina
8.
J Clin Invest ; 126(6): 2267-79, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27140397

RESUMO

The LKB1 tumor suppressor gene is frequently mutated and inactivated in non-small cell lung cancer (NSCLC). Loss of LKB1 promotes cancer progression and influences therapeutic responses in preclinical studies; however, specific targeted therapies for lung cancer with LKB1 inactivation are currently unavailable. Here, we have identified a long noncoding RNA (lncRNA) signature that is associated with the loss of LKB1 function. We discovered that LINC00473 is consistently the most highly induced gene in LKB1-inactivated human primary NSCLC samples and derived cell lines. Elevated LINC00473 expression correlated with poor prognosis, and sustained LINC00473 expression was required for the growth and survival of LKB1-inactivated NSCLC cells. Mechanistically, LINC00473 was induced by LKB1 inactivation and subsequent cyclic AMP-responsive element-binding protein (CREB)/CREB-regulated transcription coactivator (CRTC) activation. We determined that LINC00473 is a nuclear lncRNA and interacts with NONO, a component of the cAMP signaling pathway, thereby facilitating CRTC/CREB-mediated transcription. Collectively, our study demonstrates that LINC00473 expression potentially serves as a robust biomarker for tumor LKB1 functional status that can be integrated into clinical trials for patient selection and treatment evaluation, and implicates LINC00473 as a therapeutic target for LKB1-inactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/genética , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Marcadores Genéticos , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Prognóstico , Proteínas Serina-Treonina Quinases/deficiência , RNA Longo não Codificante/metabolismo , Transcriptoma
9.
Blood ; 114(19): 4310-9, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19717647

RESUMO

Adult bone marrow (BM) contributes to neovascularization in some but not all settings, and reasons for these discordant results have remained unexplored. We conducted novel comparative studies in which multiple neovascularization models were established in single mice to reduce variations in experimental methodology. In different combinations, BM contribution was detected in ischemic retinas and, to a lesser extent, Lewis lung carcinoma cells, whereas B16 melanomas showed little to no BM contribution. Using this spectrum of BM contribution, we demonstrate the necessity for site-specific expression of stromal-derived factor-1alpha (SDF-1alpha) and its mobilizing effects on BM. Blocking SDF-1alpha activity with neutralizing antibodies abrogated BM-derived neovascularization in lung cancer and retinopathy. Furthermore, secondary transplantation of single hematopoietic stem cells (HSCs) showed that HSCs are a long-term source of neovasculogenesis and that CD133(+)CXCR4(+) myeloid progenitor cells directly participate in new blood vessel formation in response to SDF-1alpha. The varied BM contribution seen in different model systems is suggestive of redundant mechanisms governing postnatal neovasculogenesis and provides an explanation for contradictory results observed in the field.


Assuntos
Quimiocina CXCL12/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/fisiopatologia , Quimiocina CXCL12/antagonistas & inibidores , Células-Tronco Hematopoéticas/citologia , Isquemia/patologia , Isquemia/fisiopatologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/fisiologia , Vasos Retinianos/patologia
10.
Biochem Biophys Res Commun ; 364(4): 771-7, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17976535

RESUMO

DDB1 was originally identified as a heterodimeric complex with DDB2 and plays an accessory role in nucleotide excision repair. DDB1 also constitutes an E3 ubiquitin ligase complex together with Cul4A and Roc1 and acts as an adaptor, suggesting its multiple roles beyond DNA repair. We have generated a conditional DDB1-knockout mutant using a chicken B lymphocyte line DT40. Doxycycline-induced DDB1 depletion caused a severe growth defect followed by apoptotic cell death. Flow cytometric analyses revealed that cell cycle progression is initially retarded at all phases and subsequently impaired at S phase along with the appearance of sub-G1 population. Similarly, DDB1-knockdown in human U2OS cells by small interfering RNA exhibited a loss of clonogenic activity and perturbed cell cycle progression. These results demonstrate that the DDB1 gene is indispensable for cell viability in higher vertebrates and this conditional DDB1-knockout clone would be highly useful for the functional analysis of DDB1.


Assuntos
Apoptose , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteínas de Ligação a DNA/genética , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Animais , Linhagem Celular , Galinhas , Inativação Gênica
11.
Stem Cells ; 25(8): 1881-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17478582

RESUMO

Bone marrow cells have the capacity to contribute to distant organs. We show that marrow also contributes to epithelial neoplasias of the small bowel, colon, and lung, but not the skin. In particular, epithelial neoplasias found in patients after hematopoietic cell transplantations demonstrate that human marrow incorporates into neoplasias by adopting the phenotype of the surrounding neoplastic environment. To more rigorously evaluate marrow contribution to epithelial cancer, we employed mouse models of intestinal and lung neoplasias, which revealed specifically that the hematopoietic stem cell and its progeny incorporate within cancer. Furthermore, this marrow involvement in epithelial cancer does not appear to occur by induction of stable fusion. Whereas previous claims have been made that marrow can serve as a direct source of epithelial neoplasia, our results indicate a more cautionary note, that marrow contributes to cancer as a means of developmental mimicry. Disclosure of Potential Conflicts of Interest is found at the end of this article.


Assuntos
Células da Medula Óssea/fisiologia , Neoplasias Intestinais/etiologia , Neoplasias Pulmonares/etiologia , Mimetismo Molecular , Neoplasias Epiteliais e Glandulares/etiologia , Adenoma/etiologia , Adenoma/patologia , Adulto , Animais , Transformação Celular Neoplásica , Progressão da Doença , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Neoplasias Intestinais/patologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/patologia
12.
J Immunol ; 174(12): 7787-91, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15944282

RESUMO

Activation-induced cytidine deaminase (AID) is required for somatic hypermutation and class switch recombination of Ig genes in B cells. Although AID has been shown to deaminate deoxycytidine to deoxyuridine in DNA in vitro, there is no physical evidence for increased uracils in DNA from cells expressing AID in vivo. We used several techniques to detect uracil bases in a gene that was actively transcribed in Escherichia coli cells expressing AID. Plasmid DNA containing the gene was digested with uracil-DNA glycosylase to remove uracil, and apurinic/apryimidinic endonuclease to nick the abasic site. The nicked DNA was first analyzed using alkaline gel electrophoresis, in which there was a 2-fold increase in the linear form of the plasmid after AID induction compared with plasmid from noninduced bacteria. Second, using a quantitative denaturing Southern blot technique, the gene was predominantly nicked in the nontranscribed strand compared with the transcribed strand. Third, using ligation-mediated PCR, the nicks were mapped on the nontranscribed strand and were located primarily at cytosine bases. These data present direct evidence for the presence of uracils in DNA from cells that are induced to express AID, and they are preferentially generated at cytosines in the nontranscribed strand during transcription.


Assuntos
Citosina Desaminase/genética , Citosina Desaminase/metabolismo , DNA/genética , DNA/metabolismo , Desoxiuridina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Sequência de Bases , Southern Blotting , Citidina/metabolismo , Citidina Desaminase , Citosina Desaminase/biossíntese , Dano ao DNA/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Desaminação , Humanos , Dados de Sequência Molecular , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Hipermutação Somática de Imunoglobulina , Transcrição Gênica , Uracila/metabolismo
13.
Genes Genet Syst ; 78(2): 169-77, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12773817

RESUMO

DDB (damaged DNA-binding protein) is a heterodimer, comprised of p48 (DDB2) and p127 (DDB1) subunits, which has a high affinity for a variety of DNA lesions including UV-photoproducts. The mutations in DDB2 gene have been found in a subset of xeroderma pigmentosum complementation group E patients. However, no natural mutation has been identified so far in the cDNA of human DDB1 and the precise roles of DDB1 are still unknown. We have cloned the DDB1 cDNA from the chicken B lymphocyte line DT40 and revealed an open reading frame of 3420 bp encoding a polypeptide of 1140 amino acids, which is identical in size to the orthologs of human, monkey, mouse, rat and Drosophila melanogaster in databases. The amino acid sequence deduced from the chicken DDB1 cDNA shows a high homology to the mammalian DDB1 orthologs (96-97% identity). Northern blot analysis using 5' portion of the chicken DDB1 cDNA as a probe detected a single transcript of ~ 4.3 kb in chicken DT40 cells as well as in human HeLa cells and mouse embryonic fibroblasts. Furthermore, the chicken DDB1 (tagged with enhanced GFP) transiently expressed in human cells mainly localized in the cytoplasm, and coexpression of human DDB2 dramatically changed the localization from the cytoplasm to nucleus. These results suggest that DDB1 is evolutionarily conserved in the primary structure and function, and may play a fundamental role in higher eukaryotes.


Assuntos
Galinhas/genética , Proteínas de Ligação a DNA/genética , Sequência de Aminoácidos , Animais , Galinhas/fisiologia , Clonagem Molecular , Sequência Conservada , Dano ao DNA , Reparo do DNA/fisiologia , DNA Complementar , Proteínas de Ligação a DNA/fisiologia , Genes Reporter , Células HeLa , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...