Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 188: 106346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37931884

RESUMO

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity. However, exploring the potential role of MeCP2 in the documented misguidance of axons in the dentate gyrus has not yet been attempted. In this study, a status epilepticus-induced decrease of neuronal MeCP2 was observed in the dentate gyrus (DG). An essential regulatory role of MeCP2 in the development of functional mossy fiber sprouting (MFS) was confirmed through stereotaxic injection of a recombinant adeno-associated virus (AAV) to up- or down-regulate MeCP2 in the dentate neurons. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed to identify the binding profile of native MeCP2 using micro-dissected dentate tissues. In both dentate tissues and HT22 cell lines, we demonstrated that MeCP2 could act as a transcription repressor on miR-682 with the involvement of the DNA methylation mechanism. Further, we found that miR-682 could bind to mRNA of phosphatase and tensin homolog (PTEN) in a sequence specific manner, thus leading to the suppression of PTEN and excessive activation of mTOR. This study therefore presents a novel epigenetic mechanism by identifying MeCP2/miR-682/PTEN/mTOR as an essential signal pathway in regulating the formation of MFS in the temporal lobe epileptic (TLE) mice. SIGNIFICANCE STATEMENT: Understanding the mechanisms that regulate axon guidance is important for a better comprehension of neural disorders. Sprouting of mossy fibers, one of the most consistent findings in patients with mesial temporal lobe epilepsy, has been considered a paradigmatic example of circuit plasticity in the adult brain. Although abnormal regulation of DNA methylation has been observed in both experimental rodents and humans with epilepsy, the potential role of DNA methylation in this well-documented example of sprouting of dentate axon remains elusive. This study demonstrates an essential role of methyl-CpG-binding protein 2 in the formation of mossy fiber sprouting. The underlying signal pathway has been also identified. The data hence provide new insight into epileptogenesis as well as axon misguidance in the central nervous system.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , MicroRNAs , Animais , Humanos , Camundongos , Giro Denteado/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Fibras Musgosas Hipocampais , Serina-Treonina Quinases TOR/metabolismo
2.
J Chem Neuroanat ; 132: 102325, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595695

RESUMO

Anesthetics-induced disruption of dentate neurogenesis in the young brain is strongly suggested to contribute to delayed neurocognitive deficit. In postnatal rodents, the neurogenesis of the dentate gyrus (DG) is sequentially derived from the secondary dentate matrix, tertiary dentate matrix and subgranular zone (SGZ). However, the effects of anesthetics on the dentate neurogenesis derived from specific sites are poorly understood. To trace the new cells generated from the postnatal secondary dentate matrix, peak stage of the tertiary dentate matrix and early stage of the SGZ after isoflurane exposure, mice at postnatal day 1 (P1), P7 and P31 were injected with BrdU at 12 h before the exposure. We found that isoflurane exposure significantly reduced the numbers of proliferating cells (1 day old), immature granule cells (21 days old) or mature granule cells (42 days old) derived from the peak stage of the tertiary dentate matrix and postnatal secondary dentate matrix, but not from the SGZ. Quantitative assessment of BrdU-/BrdU+NeuN-positive cells and cleaved caspase-3 level in the DG indicated that the reduction was correlated with cell loss rather than neuronal differentiation. Mechanistically, we demonstrated that the PI3K/Akt/GSK-3ß pathway enriched by mRNA-sequencing is a requirement for the isoflurane-induced loss of 1-day-old proliferating cells generated from the tertiary dentate matrix. In addition, this study demonstrated that P1 and P7 mice, but not P31 mice exposure to isoflurane resulted in subsequent deficits in performance of the tasks of the Morris Water Maze.


Assuntos
Isoflurano , Animais , Camundongos , Isoflurano/farmacologia , Bromodesoxiuridina , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...