Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhonghua Yi Xue Za Zhi ; 98(25): 2002-2006, 2018 Jul 03.
Artigo em Chinês | MEDLINE | ID: mdl-29996600

RESUMO

Objective: To characterize the brain functional changes of amyotrophic lateral sclerosis (ALS) patients with various levels of cognitive impairment as measured by resting-state functional MRI (RS-fMRI). Methods: From September 2013 to March 2017, a total of 55 patients diagnosed with ALS in Peking Union Medical College Hospital and 20 healthy controls (HCs) were included in this study, and all participants underwent neuropsychological assessments and diffusion tensor imaging scans. According to their cognitive performance, ALS patients were further subclassified into ALS with normal cognition (ALS-Cn, n=27), those with cognitive impairment (ALS-Ci, n=17) and ALS-FTD (n=11). Comparisons of fractional amplitude of low frequency fluctuation (fALFF) value and regional homogeneity (ReHo) value were conducted among the 4 subgroups. Results: The fALFF showed significant differences in bilateral frontal lobe, left temporal lobe and cingulate gyrus, (P<0.001, uncorrected) and the ReHo showed significant differences in left frontal lobe, right temporal lobe and left cingulate gyrus (P<0.001, FDR corrected). The differences mainly stemmed from that patients with ALS-FTD showed decreased fALFF and ReHo in these areas when compared to the other three groups, especially in relation to HCs, mainly locating in left prefrontal lobe and anterior cingulate cortex. The whole-brain comparisons of fALFF and ReHo between ALS-Ci, ALS-Cn and HCs revealed no significant difference (P<0.001, uncorrected). Conclusion: Hypoactivities are detected in extramotor areas in patients with ALS-FTD. RS-fMRI is helpful in investigating the pathophysiologic mechanism of cognitive impairment in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Encéfalo , Disfunção Cognitiva , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética
2.
Mucosal Immunol ; 10(2): 520-530, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27461178

RESUMO

Mucosal antigen-specific CD4 T-cell responses to intestinal pathogens remain incompletely understood. Here we examined the CD4 T-cell response after oral infection with an internalin A 'murinized' Listeria monocytogenes (Lm). Oral Lm infection induced a robust endogenous listeriolysin O (LLO)-specific CD4 T-cell response with distinct phenotypic and functional characteristics in the intestine. Circulating LLO-specific CD4 T cells transiently expressed the 'gut-homing' integrin α4ß7 and accumulated in the intestinal lamina propria and epithelium where they were maintained independent of interleukin (IL)-15. The majority of intestinal LLO-specific CD4 T cells were CD27- Ly6C- and CD69+ CD103- while the lymphoid LLO-specific CD4 T cells were heterogeneous based on CD27 and Ly6C expression and predominately CD69-. LLO-specific effector CD4 T cells transitioned into a long-lived memory population that phenotypically resembled their parent effectors and displayed hallmarks of residency. In addition, intestinal effector and memory CD4 T cells showed a predominant polyfunctional Th1 profile producing IFNγ, TNFα, and IL-2 at high levels with minimal but detectable levels of IL-17A. Depletion of CD4 T cells in immunized mice led to elevated bacterial burden after challenge infection highlighting a critical role for memory CD4 T cells in controlling intestinal intracellular pathogens.


Assuntos
Memória Imunológica , Mucosa Intestinal/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Células Th1/imunologia , Administração Oral , Animais , Antígenos CD/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/imunologia , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Proteínas de Choque Térmico/imunologia , Proteínas Hemolisinas/imunologia , Integrina alfa4/metabolismo , Cadeias beta de Integrinas/metabolismo , Mucosa Intestinal/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Retorno de Linfócitos/metabolismo
3.
Nanotechnology ; 26(31): 315201, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26180074

RESUMO

The spin-polarized transport properties of a high-spin-state spin-crossover molecular junction with zigzag-edge graphene nanoribbon electrodes have been studied using density functional theory combined with the nonequilibrium Green's-function formalism. The molecular junction presents integrated spintronic functionalities such as negative differential resistance behavior, spin filter and the spin rectifying effect, associated with the giant magnetoresistance effect by tuning the external magnetic field. Furthermore, the transport properties are almost unaffected by the electrode temperature. The microscopic mechanism of these functionalities is discussed. These results represent a step toward multifunctional molecular spintronic devices on the level of the individual spin-crossover molecule.

4.
Oncogene ; 32(1): 39-49, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22349827

RESUMO

Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that epithelial-ovarian cancer stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and mesenchymal-epithelial transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected intraperitoneally in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to 'home' to the ovaries and establish tumors. Most interestingly, we found that TWIST-1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST-1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells.


Assuntos
Diferenciação Celular , Metástase Neoplásica , Neoplasias Epiteliais e Glandulares/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Proteólise , Células Tumorais Cultivadas
5.
Phys Chem Chem Phys ; 13(1): 328-36, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21031205

RESUMO

The zero- and low-temperature behaviors of a quasi-one-dimensional organic polymer proposed as a symmetrical periodic Anderson-like chain model, in which the localized f orbitals hybridize with the conduction orbitals at even sites, are investigated by means of many-body Green's function theory. In the absence of magnetic field, the ground state of the system turns out to be ferrimagnetic. The temperature-induced phase diagrams have been explored, where the competition between the Hubbard repulsion U on the localized f orbital and the hybridization strength V makes an important impact on the transition temperature. In a magnetic field, it is found that a 1/3 magnetization plateau appears and two critical fields indicating the insulator-metal transitions at zero temperature emerge, which are closely related to the energy bands. Furthermore, the single-site entanglement entropy is a good indicator of quantum phase transitions. The temperature-field-induced phase diagram has also been attained, wherein the magnetization plateau state, the gapless phase and the spin polarized state are revealed. The temperature dependence of thermodynamic quantities such as the magnetization, susceptibility and specific heat are calculated to characterize the corresponding phases. It is also found that the up-spin and down-spin hole excitations are responsible for the thermodynamic properties.


Assuntos
Magnetismo , Metais/química , Polímeros/química , Teoria Quântica , Termodinâmica
6.
J Chem Phys ; 132(21): 214703, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20528037

RESUMO

For molecule-scale transport systems, a mechanism that the charge distribution of molecule under the various bias voltages can induce strong effect of rectification and negative differential resistance is proposed. Based on nonequilibrium Green's function combined with density functional theory, the proposal is testified by performing the first-principles calculations of transport characteristics of 2-(4(')-thiolate-butyl)-6-thiol-anthrecene molecule sandwiched in two gold electrodes. The strong effect of rectification and negative differential resistance is obtained. The rectification effect is as large as 16.

7.
Oncogene ; 29(24): 3545-53, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20400975

RESUMO

Cancer stem cells are responsible for sustaining the tumor and giving rise to proliferating and progressively differentiating cells. However, the molecular mechanisms regulating the process of cancer stem cell (CSC) differentiation is not clearly understood. Recently, we reported the isolation of the epithelial ovarian cancer (EOC) stem cells (type I/CD44+). In this study, we show that type I/CD44+ cells are characterized by low levels of both miR-199a and miR-214, whereas mature EOC cells (type II/CD44-) have higher levels of miR-199a and miR-214. Moreover, these two micro RNAs (miRNAs) are regulated as a cluster on pri-miR-199a2 within the human Dnm3os gene (GenBank FJ623959). This study identify Twist1 as a regulator of this unique miRNA cluster responsible for the regulation of the IKKbeta/NF-kappaB and PTEN/AKT pathways and its association of ovarian CSC differentiation. Our data suggest that Twist1 may be an important regulator of 'stemness' in EOC cells. The regulation of MIR199A2/214 expression may be used as a potential therapeutic approach in EOC patients.


Assuntos
MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína 1 Relacionada a Twist/metabolismo , Animais , Morte Celular/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromossomos Humanos Par 1/genética , Citocinas/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Dados de Sequência Molecular , Família Multigênica/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
8.
Phys Chem Chem Phys ; 11(48): 11415-23, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20024411

RESUMO

We study the spin-Peierls (SP) transition of one-dimensional chain polymeric complexes coupled to lattice by means of many-body Green's function theory. The chain effective elastic constant is an intrinsic factor that determines the order of SP transition. It is found that the SP transition temperature T(SP) and the susceptibility-maximum temperature T(max) are in agreement with the experimental results. When an external magnetic field is applied to the chain, it makes T(SP) and T(max) decrease, and drives the SP transition from the second order to the first order. Besides, we show that the two-site thermal entanglement entropy is a good indicator of SP transition. Further considering the effect of interchain coupling on SP transition, with weak coupling of double-chain, the theoretical values are closer to the experimental results. We also calculate the density of states and spectral functions, which show that the energy gap vanishes at a critical temperature lower than T(SP), indicating a gapless SP phase lies in the gapped dimerized phase. The interchain coupling can drive the SP transition from the second order to the first order, while the SP dimerization may collapse for large interchain couplings.

9.
Cancer ; 92(7): 1753-8, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11745246

RESUMO

BACKGROUND: Previously, the authors reported that specific antisense suppression of overexpressed proline-directed protein kinase (PDPK) F(A) enhances the chemosensitivity of various clinical anticancer drugs up to > 100-fold in human prostate carcinoma cells, suggesting an association of PDPK F(A) with drug resistance in human malignancies. METHODS: In this report, by using a similar approach, the authors demonstrate further that the suppression of PDPK F(A) enhances even more dramatically the chemosensitivity of clinically used anticancer drugs in various types of human acute lymphoblastic leukemia (ALL) cells. RESULTS: Compared with parental and control transfected cells, transduced ALL cells (both Jurkat and CCRF-CEM cells) with low levels of PDPK F(A) displayed an enhanced sensitivity to vincristine, vinblastine, paclitaxel, methotrexate, doxorubicin, and daunorubicin. Estimation of the 50% inhibitory concentration (IC(50)) index further revealed that the transduced cells displayed up to > 3000-fold drug sensitivity, and there was a correlation between suppressed levels of PDPK F(A) and drug sensitivity. A mechanistic study further revealed that the enhanced chemosensitivity in transduced ALL cells was due mainly to the potentiation of apoptotic induction. CONCLUSIONS: Taken together, the results demonstrate that the suppression of overexpressed PDPK F(A) greatly enhances the chemosensitivity of various clinical anticancer drugs in both types of human ALL cells, providing initial evidence for an important role of this PDPK in controlling multidrug resistance of ALL.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Apoptose , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Quinases Direcionadas a Prolina , Proteínas Serina-Treonina Quinases/genética , Transfecção , Células Tumorais Cultivadas
10.
Plant Cell ; 10(5): 849-57, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9596642

RESUMO

Protein tyrosine kinases and phosphatases play a vital role in the regulation of cell growth and differentiation in animal systems. However, none of these enzymes has been characterized from higher plants. In this study, we isolated a cDNA encoding a putative protein tyrosine phosphatase (PTPase) from Arabidopsis (referred to as AtPTP1). The expression level of AtPTP1 is highly sensitive to environmental stresses. High-salt conditions increased AtPTP1 mRNA levels, whereas cold treatment rapidly eliminated the AtPTP1 transcript. The recombinant AtPTP1 protein specifically hydrolyzed phosphotyrosine, but not phosphoserine/threonine, in protein substrates. Site-directed mutagenesis defined two highly conserved amino acids, cysteine-265 and aspartate-234, as being essential for the phosphatase activity of the AtPTP1 protein, suggesting a common catalytic mechanism for PTPases from all eukaryotic systems. In summary, we have identified AtPTP1 as a tyrosine-specific protein phosphatase that may function in stress responses of higher plants.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Regulação Enzimológica da Expressão Gênica , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Proteínas Tirosina Fosfatases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Plant Cell ; 10(1): 63-73, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9477572

RESUMO

Plant roots contain both high- and low-affinity transport systems for uptake of K+ from the soil. In this study, we characterize a K+ transporter that functions in both high- and low-affinity uptake. Using yeast complementation analysis, we isolated a cDNA for a functional K+ transporter from Arabidopsis (referred to as AtKUP1 for Arabidopsis thaliana K+ uptake). When expressed in a yeast mutant, AtKUP1 dramatically increased K+ uptake capacity at both a low and high [K+] range. Kinetic analyses showed that AtKUP1-mediated K+ uptake displays a "biphasic" pattern similar to that observed in plant roots. The transition from the high-affinity phase (K(m) of 44 microM) to the low-affinity phase (K(m) of 11 mM) occurred at 100 to 200 microM external K+. Both low- and high-affinity K+ uptake via AtKUP1 were inhibited by 5 mM or higher concentrations of NaCl. In addition, AtKUP1-mediated K+ uptake was inhibited by K+ channel blockers, including tetraethylammonium, Cs+, and Ba2+. Consistent with a possible function in K+ uptake from the soil, the AtKUP1 gene is primarily expressed in roots. We conclude that the AtKUP1 gene product may function as a K+ transporter in Arabidopsis roots over a broad range of [K+] in the soil.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions , Genes de Plantas , Potássio/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Cátions Monovalentes/metabolismo , DNA Complementar/genética , DNA de Plantas/genética , Relação Dose-Resposta a Droga , Teste de Complementação Genética , Dados de Sequência Molecular , Raízes de Plantas/metabolismo , Bloqueadores dos Canais de Potássio , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sódio/farmacologia , Distribuição Tecidual , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...