Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444930

RESUMO

Rocks present complex deformation behaviours and damage processes under triaxial cyclic loading-a subject not yet sufficiently researched. This paper performed triaxial multistage constant-amplitude cyclic loading experiments under different confining stresses on carbonaceous phyllite. The degradation process is analysed by investigating the variation of elastic modulus ES, Poisson's ratio υ, irreversible strain εirr and energy. Moreover, the rock's failure mode is explored from both macro and micro perspectives. The results showed that the increase in stress level caused the decrease of ES in a step-like form, and the constant-amplitude cyclic loading in each stress level caused a slow decrease of ES, while the υ increased with stress level and constant-amplitude cycles in a similar form. εirr accumulated rapidly at first and then slowly at each stress level; the stress level and irreversible axial strain are related by an exponential function. In terms of energy evolution analysis, the damage to rock can be represented by the cumulative damage energy, there were deceleration accumulations and stability accumulation stages of damage at all stress levels, and an acceleration accumulation stage occurred when the rock was close to failure. The failures of rock under cyclic loading are mainly shear failures, accompanied by grain crushing.

2.
Materials (Basel) ; 16(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374433

RESUMO

This study investigates the influence of longitudinal through voids on vault lining. Firstly, a loading test was carried out on a local void model, and the CDP model was used for numerical verification. It was found that the damage to the lining caused by a longitudinal through void was primarily located at the void boundary. On the basis of these findings, an overall model of the vault's through void was established using the CDP model. The effects of the void on the circumferential stress, vertical deformation, axial force, and bending moment of the lining surface were analyzed, and the damage characteristics of the vault's through void lining were studied. The results indicated that the through void of the vault caused circumferential tensile stress on the lining surface of the void boundary, while the compressive stress of the vault increased significantly, resulting in a relatively uplifted vault. Furthermore, the axial force within the void range decreased, and the local positive bending moment at the void boundary increased significantly. The impact of the void increased gradually with the height of the void. If the height of the longitudinal through void is large, the inner surface of the lining at the void boundary will crack longitudinally, and the vault will be at risk of falling blocks or even being crushed.

3.
Materials (Basel) ; 16(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676525

RESUMO

To study the mechanism of vault lining under different void heights and verify the strengthening effect of the attached steel plate, a CDP (concrete-damaged plasticity) model and the XFEM (extended finite element method) were used to construct the local numerical model of the vault void, and an experiment was carried out for verification. The strengthened structure of the steel plate was assembled with a combination of a two-component epoxy adhesive and chemical anchor bolts. Five lining models with various void thicknesses, together with their strengthened models, were evaluated. The results of the established numerical model were compared with the experimental results in terms of failure mode, vertical displacement, and load-deformation results. The results of the two numerical models were in good agreement with the experimental results, revealing the failure mechanism of the vault lining. The rigidity of the specimen after steel plate strengthening was significantly improved. When the void height was one-fourth of the secondary lining thickness, the lining cracks were reduced from 14 to 4, and the distribution width of the cracks was also reduced from 1.047 to 0.091 m after steel plate strengthening. The level of damage caused by cracking was significantly reduced, which proves the effectiveness of the surface-sticking method for steel plate strengthening.

4.
R Soc Open Sci ; 5(7): 180125, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109069

RESUMO

Generally minimally invasive surgery is performed using an endoscope and other instruments including electrosurgical units (ESUs), and the adhesion of tissue to electrodes is a major concern. The mechanism governing this tissue sticking, especially the influence of high-frequency electric field, is still unclear. In this study, the effect of high-frequency electric field on the tissue sticking upon electrodes was investigated. The electrosurgical cutting test was performed on ex vivo fresh porcine liver under blend mode using a monopolar ESU. A heat-adherence test without electric field was used as a control. For the control group, the electrode was heated and maintained at a certain temperature and directly in contact with porcine liver. Both sticking tissues obtained from these two tests are partially carbonized porcine liver tissue, but their microstructure and bonding with electrode are obviously different. The sticking tissue formed just under heat is composed of biggish nanoparticles of different sizes which are loosely aggregated and has a weak bonding with the electrode, while the sticking tissue from the electrosurgical cutting test consists of tightly packed fine nanoparticles of equable size as a result of thermo-electric coupling and has a strong bonding with the electrode. Obviously, high-frequency electric field plays an extremely important role in the formation of the sticking tissue. It is the thermo-electric coupling that underlies the function of minimally invasive electrosurgical devices, and the effect of high-frequency electric field cannot be ignored in the tissue sticking study and anti-sticking strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...