Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600431

RESUMO

Electrocatalytic carbon dioxide/carbon monoxide reduction reaction (CO(2)RR) has emerged as a prospective and appealing strategy to realize carbon neutrality for manufacturing sustainable chemical products. Developing highly active electrocatalysts and stable devices has been demonstrated as effective approach to enhance the conversion efficiency of CO(2)RR. In order to rationally design electrocatalysts and devices, a comprehensive understanding of the intrinsic structure evolution within catalysts and micro-environment change around electrode interface, particularly under operation conditions, is indispensable. Synchrotron radiation has been recognized as a versatile characterization platform, garnering widespread attention owing to its high brightness, elevated flux, excellent directivity, strong polarization and exceptional stability. This review systematically introduces the applications of synchrotron radiation technologies classified by radiation sources with varying wavelengths in CO(2)RR. By virtue of in situ/operando synchrotron radiationanalytical techniques, we also summarize relevant dynamic evolution processes from electronic structure, atomic configuration, molecular adsorption, crystal lattice and devices, spanning scales from the angstrom to the micrometer. The merits and limitations of diverse synchrotron characterization techniques are summarized, and their applicable scenarios in CO(2)RR are further presented. On the basis of the state-of-the-art fourth-generation synchrotron facilities, a perspective for further deeper understanding of the CO(2)RR process using synchrotron radiation analytical techniques is proposed.

2.
Angew Chem Int Ed Engl ; 62(19): e202217296, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912381

RESUMO

The electrocatalytic reduction of carbon dioxide provides a feasibility to achieve a carbon-neutral energy cycle. However, there are a number of bottleneck issues to be resolved before industrial application, such as the low conversion efficiency, selectivity and reaction rate, etc. Engineering local environment is a critical way to address these challenges. Here, a monolayer MgAl-LDH was proposed to optimize the local environment of Cu for stimulating industrial-current-density CO2 -to-C2 H4 electroreduction in neutral media. In situ spectroscopic results and theoretical study demonstrated that the Cu electrode modified by MgAl-LDH (MgAl-LDH/Cu) displayed a much higher surface pH value compared to the bare Cu, which could be attributed to the decreased energy barrier for hydrolysis on MgAl-LDH sites with more OH- ions on the surface of the electrode. As a result, MgAl-LDH/Cu achieved a C2 H4 Faradaic efficiency of 55.1 % at a current density up to 300 mA cm-2 in 1.0 M KHCO3 electrolyte.

3.
Small ; 19(27): e2207965, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965022

RESUMO

The progress of effective and durable electrocatalysts for oxygen evolution reaction (OER) is urgent, which is essential to promote the overall efficiency of green hydrogen production. To improve the performance of spinel cobalt-based oxides, which serve as promising water oxidation electrocatalysts in alkaline electrolytes, most researches have been concentrated on cations modification. Here, an anionic regulation mechanism is employed to adopt sulfur(S) anion substitution to supplant NiCo2 O4 by NiCo2 S4 , which contributed to an impressive OER performance in alkali. It is revealed that the substitution of S constructs a sub-stable spinel structure that facilitates its reconstruction into active amorphous oxysulfide under OER conditions. More importantly, as the active phase in the actual reaction process, the hetero-anionic amorphous oxysulfide has an appropriately tuned electronic structure and efficient OER electrocatalytic activity. This work demonstrates a promising approach for achieving anion conditioning-based tunable structure reconstruction for robust and easy preparation spinel oxide OER electrocatalysts.

4.
Adv Mater ; 34(29): e2202854, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35686844

RESUMO

The electrocatalytic CO2 RR to produce value-added chemicals and fuels has been recognized as a promising means to reduce the reliance on fossil resources; it is, however, hindered due to the lack of high-performance electrocatalysts. The effectiveness of sculpturing metal/metal oxides (MMO) heterostructures to enhance electrocatalytic performance toward CO2 RR has been well documented, nonetheless, the precise synergistic mechanism of MMO remains elusive. Herein, an in operando electrochemically synthesized Cr2 O3 -Ag heterostructure electrocatalyst (Cr2 O3 @Ag) is reported for efficient electrocatalytic reduction of CO2 to CO. The obtained Cr2 O3 @Ag can readily achieve a superb FECO of 99.6% at -0.8 V (vs RHE) with a high JCO of 19.0 mA cm-2 . These studies also confirm that the operando synthesized Cr2 O3 @Ag possesses high operational stability. Notably, operando Raman spectroscopy studies reveal that the markedly enhanced performance is attributable to the synergistic Cr2 O3 -Ag heterostructure induced stabilization of CO2 •- /*COOH intermediates. DFT calculations unveil that the metallic-Ag-catalyzed CO2 reduction to CO requires a 1.45 eV energy input to proceed, which is 0.93 eV higher than that of the MMO-structured Cr2 O3 @Ag. The exemplified approaches in this work would be adoptable for design and development of high-performance electrocatalysts for other important reactions.

5.
Nanomicro Lett ; 14(1): 121, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505158

RESUMO

Bismuth-based materials (e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO2 to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO2RR conditions. A synthetic approach is developed to electrochemically convert BiOCl into Cl-containing subcarbonate (Bi2O2(CO3)xCly) under operando CO2RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi2O2(CO3)xCly via a cathodic potential-promoted anion-exchange process. The operando synthesized Bi2O2(CO3)xCly can tolerate - 1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi2O2CO3, the formation of metallic Bio occurs at - 0.6 V versus RHE. At - 0.8 V versus RHE, Bi2O2(CO3)xCly can readily attain a FEHCOO- of 97.9%, much higher than that of the pure Bi2O2CO3 (81.3%). DFT calculations indicate that differing from the pure Bi2O2CO3-catalyzed CO2RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of HCOO- over Bi2O2(CO3)xCly has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.

6.
J Am Chem Soc ; 144(13): 6028-6039, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302356

RESUMO

Water-alkaline electrolysis holds a great promise for industry-scale hydrogen production but is hindered by the lack of enabling hydrogen evolution reaction electrocatalysts to operate at ampere-level current densities under low overpotentials. Here, we report the use of hydrogen spillover-bridged water dissociation/hydrogen formation processes occurring at the synergistically hybridized Ni3S2/Cr2S3 sites to incapacitate the inhibition effect of high-current-density-induced high hydrogen coverage at the water dissociation site and concurrently promote Volmer/Tafel processes. The mechanistic insights critically important to enable ampere-level current density operation are depicted from the experimental and theoretical studies. The Volmer process is drastically boosted by the strong H2O adsorption at Cr5c sites of Cr2S3, the efficient H2O* dissociation via a heterolytic cleavage process (Cr5c-H2O* + S3c(#) → Cr5c-OH* + S3c-H#) on the Cr5c/S3c sites in Cr2S3, and the rapid desorption of OH* from Cr5c sites of Cr2S3 via a new water-assisted desorption mechanism (Cr5c-OH* + H2O(aq) → Cr5c-H2O* + OH-(aq)), while the efficient Tafel process is achieved through hydrogen spillover to rapidly transfer H# from the synergistically located H-rich site (Cr2S3) to the H-deficient site (Ni3S2) with excellent hydrogen formation activity. As a result, the hybridized Ni3S2/Cr2S3 electrocatalyst can readily achieve a current density of 3.5 A cm-2 under an overpotential of 251 ± 3 mV in 1.0 M KOH electrolyte. The concept exemplified in this work provides a useful means to address the shortfalls of ampere-level current-density-tolerant Hydrogen evolution reaction (HER) electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...