Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 346: 109168, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33773355

RESUMO

Knowledge of the effects of various strains of acetic acid bacteria (AAB) on sourdough remains limited. In this study, the diversity of microbial taxa in sourdoughs fermented by different starters was assessed and their functional capacity was evaluated via high-throughput metagenomics sequencing. Results showed that Erwinia (29.43%), Pantoea (45.89%), and Enterobacter (9.16%) were predominant in the blank CK treatment. Lactobacillus (91.40%), Saccharomyces (6.13%), as well as the AAB genus Acetobacter (0.61%) were the dominant microbial genera in the sourdoughs started by yeast and a strain of lactic acid bacteria (YL treatment). By contrast, the dominant genera in the sourdoughs started by yeasts and various LAB and AAB strains (YLA treatment) were Komagataeibacter (0.39%) except for the inoculated Lactobacillus (68.37%), Acetobacter (20.17%), and Saccharomyces (8.31%) species. Functional prediction of these changes in microbial community and diversity revealed that various metabolism-related pathways, including alanine, aspartate, and glutamate metabolism (21.95%), as well as amino acid biosynthesis (19.14%), were predominant in the sourdoughs started by yeast and an AAB strain (YA treatment). Moreover, arginine biosynthesis (11.65%) were the dominant pathways in the YL treatment. The fermented dough added with sourdoughs started with yeast + AAB and yeast + AAB + LAB strains had substantially higher contents (more than 48.58% in total) of essential amino acids than the dough added with sourdoughs started with yeast + LAB strain. These results demonstrated that amino acid biosynthesis has a beneficial effect on sourdoughs inoculated with an AAB strain.


Assuntos
Ácido Acético/metabolismo , Bactérias/isolamento & purificação , Biodiversidade , Pão/microbiologia , Lactobacillales/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fermentação , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Metagenômica , Triticum/metabolismo , Triticum/microbiologia , Leveduras/classificação , Leveduras/genética , Leveduras/isolamento & purificação
2.
3 Biotech ; 10(2): 67, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030336

RESUMO

The biodegradation of acetochlor in solution and soil and improvements in the growth of maize seedlings by a phosphate-solubilizing bacterial strain were investigated in this research. The strain Bacillus sp. ACD-9 optimally degraded acetochlor at pH 6.0 and 42 °C in solution. And acetochlor with an initial concentration of 30 mg/L was efficiently (> 60%) degraded by the strain after 2 days in solution. Acetochlor biodegradation and the resulting beneficial products were also identified by LC-MS, and the probable degradation products of acetochlor and two kinds of plant growth hormones, namely, 2-chloro-N-(2-methyl-6-ethylphenyl) acetamide (CMEPA), indoleacetic acid (IAA), and zeatin, were detected from the fermentation broth of strain ACD-9. The effects of the strain on the growth and acetochlor accumulation of maize seedlings were also analyzed in laboratory-scale pot experiments. Inoculation of the strain in soil could significantly improve growth (> 9.4%) and phosphorus uptake (> 14.8%) and decrease the accumulation (> 70%) and toxic effects of acetochlor on seedlings. Taking the results together, strain ACD-9 may be useful in the degradation of acetochlor in soil and promotion of the growth and phosphorus uptake of maize.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...