Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Acta Pharm Sin B ; 14(5): 2228-2246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799646

RESUMO

Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.

2.
J Hepatol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670321

RESUMO

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.

3.
Nat Commun ; 15(1): 1429, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365899

RESUMO

Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Músculo Liso Vascular , Humanos , Animais , Camundongos , Senescência Celular/genética , Doenças Cardiovasculares/metabolismo , NAD/metabolismo , Células Cultivadas , Envelhecimento/fisiologia , Artérias , Miócitos de Músculo Liso/metabolismo
4.
Adv Sci (Weinh) ; 11(16): e2305715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417117

RESUMO

Drug-induced liver injury (DILI) is a significant global health issue that poses high mortality and morbidity risks. One commonly observed cause of DILI is acetaminophen (APAP) overdose. GSDME is an effector protein that induces non-canonical pyroptosis. In this study, the activation of GSDME, but not GSDMD, in the liver tissue of mice and patients with APAP-DILI is reported. Knockout of GSDME, rather than GSDMD, in mice protected them from APAP-DILI. Mice with hepatocyte-specific rescue of GSDME reproduced APAP-induced liver injury. Furthermore, alterations in the immune cell pools observed in APAP-induced DILI, such as the replacement of TIM4+ resident Kupffer cells (KCs) by monocyte-derived KCs, Ly6C+ monocyte infiltration, MerTk+ macrophages depletion, and neutrophil increase, reappeared in mice with hepatocyte-specific rescue of GSDME. Mechanistically, APAP exposure led to a substantial loss of interferon-stimulated gene 15 (ISG15), resulting in deISGylation of carbamoyl phosphate synthetase-1 (CPS1), promoted its degradation via K48-linked ubiquitination, causing ammonia clearance dysfunction. GSDME deletion prevented these effects. Delayed administration of dimethyl-fumarate inhibited GSDME cleavage and alleviated ammonia accumulation, mitigating liver injury. This findings demonstrated a previously uncharacterized role of GSDME in APAP-DILI by promoting pyroptosis and CPS1 deISGylation, suggesting that inhibiting GSDME can be a promising therapeutic option for APAP-DILI.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Gasderminas , Piroptose , Animais , Humanos , Masculino , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Falência Hepática/metabolismo , Falência Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piroptose/efeitos dos fármacos
5.
Int Immunopharmacol ; 125(Pt A): 111133, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149573

RESUMO

Acetaminophen (N-acetyl-p-aminophenol; APAP), a widely used effective nonsteroidal anti-inflammatory drug, leads to acute liver injury at overdose worldwide. Evidence showed that the severity of liver injury associated with the subsequent involvement of inflammatory mediators and immune cells. The innate immune stimulator of interferon genes protein (STING) pathway was critical in modulating inflammation. Here, we show that STING was activated and inflammation was enhanced in the liver in APAP-overdosed C57BL/6J mice, and Sting mutation (Stinggt/gt) mice exhibited less liver damage. Multiplexing flow cytometry displayed that Sting mutation changed hepatic recruitment and replacement of macrophages/monocytes in APAP-overdosed mice, which was inclined to anti-inflammation. In addition, Sting mutation limited NLRP3 activation in the liver in APAP-overdosed mice, and inhibited the expression of inflammatory cytokines. Finally, MCC950, a potent and selective NLRP3 inhibitor, significantly ameliorated APAP-induced liver injury and inflammation. Besides, pretreatment of MCC950 in C57 mice resulted in changes of immune cells infiltration in the liver similar to Stinggt/gt mice. Our study revealed that STING played a crucial role in APAP-induced acute liver injury, possibly by maintaining liver immune cells homeostasis and inhibiting NLRP3 inflammasome activation, suggesting that inhibiting STING-NLRP3 pathway might be a potential therapeutic strategy for acute liver injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Proteínas de Membrana , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Proteínas de Membrana/metabolismo , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL
6.
Antioxid Redox Signal ; 39(7-9): 512-530, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851903

RESUMO

Significance: Pyroptosis is a discovered programmed cell death that is mainly executed by the gasdermin protein family. Cell swelling and membrane perforation are observed when pyroptosis occurs, and is accompanied by the liberation of cell contents. Recent Advances: As the study of pyroptosis continues to progress, there is increasing evidence that pyroptosis influences the development of tumors. In addition, the relationship between pyroptosis and tumor is diverse for different tissues and cells. Critical Issues: In this review, we first introduce the research history and molecular mechanisms of pyroptosis. Then we specifically discuss the link between pyroptosis and metabolic and oxidation in tumorigenesis. In the subsequent sections, we focus on the induction of pyroptosis in cancer and its potential role as a promising target for cancer therapy, and discuss the implications of pyroptosis in tumor treatment. In addition, we further summarize the therapeutic value of pyroptosis in tumor treatment. Future Directions: A detailed understanding of the role played by pyroptosis in tumors will help us to further explore tumor formation and progression and provide ideas for the development of new pyroptosis-based therapeutic approaches for patients. Antioxid. Redox Signal. 39, 512-530.


Assuntos
Neoplasias , Piroptose , Humanos , Piroptose/fisiologia , Apoptose/fisiologia , Neoplasias/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Oxirredução
7.
Med Res Rev ; 43(3): 683-712, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658745

RESUMO

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Assuntos
Ferroptose , Doenças Metabólicas , Humanos , Apoptose , Doenças Metabólicas/tratamento farmacológico , Antioxidantes , Peróxidos Lipídicos
8.
Acta Pharm Sin B ; 12(9): 3650-3666, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176906

RESUMO

Metabolic-associated fatty liver disease (MAFLD), which is previously known as non-alcoholic fatty liver disease (NAFLD), represents a major health concern worldwide with limited therapy. Here, we provide evidence that ferroptosis, a novel form of regulated cell death characterized by iron-driven lipid peroxidation, was comprehensively activated in liver tissues from MAFLD patients. The canonical-GPX4 (cGPX4), which is the most important negative controller of ferroptosis, is downregulated at protein but not mRNA level. Interestingly, a non-canonical GPX4 transcript-variant is induced (inducible-GPX4, iGPX4) in MAFLD condition. The high fat-fructose/sucrose diet (HFFD) and methionine/choline-deficient diet (MCD)-induced MAFLD pathologies, including hepatocellular ballooning, steatohepatitis and fibrosis, were attenuated and aggravated, respectively, in cGPX4-and iGPX4-knockin mice. cGPX4 and iGPX4 isoforms also displayed opposing effects on oxidative stress and ferroptosis in hepatocytes. Knockdown of iGPX4 by siRNA alleviated lipid stress, ferroptosis and cell injury. Mechanistically, the triggered iGPX4 interacts with cGPX4 to facilitate the transformation of cGPX4 from enzymatic-active monomer to enzymatic-inactive oligomers upon lipid stress, and thus promotes ferroptosis. Co-immunoprecipitation and nano LC-MS/MS analyses confirmed the interaction between iGPX4 and cGPX4. Our results reveal a detrimental role of non-canonical GPX4 isoform in ferroptosis, and indicate selectively targeting iGPX4 may be a promising therapeutic strategy for MAFLD.

9.
Eur Heart J ; 43(43): 4579-4595, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35929617

RESUMO

AIMS: Exercise confers protection against cardiovascular ageing, but the mechanisms remain largely unknown. This study sought to investigate the role of fibronectin type-III domain-containing protein 5 (FNDC5)/irisin, an exercise-associated hormone, in vascular ageing. Moreover, the existence of FNDC5/irisin in circulating extracellular vesicles (EVs) and their biological functions was explored. METHODS AND RESULTS: FNDC5/irisin was reduced in natural ageing, senescence, and angiotensin II (Ang II)-treated conditions. The deletion of FNDC5 shortened lifespan in mice. Additionally, FNDC5 deficiency aggravated vascular stiffness, senescence, oxidative stress, inflammation, and endothelial dysfunction in 24-month-old naturally aged and Ang II-treated mice. Conversely, treatment of recombinant irisin alleviated Ang II-induced vascular stiffness and senescence in mice and vascular smooth muscle cells. FNDC5 was triggered by exercise, while FNDC5 knockout abrogated exercise-induced protection against Ang II-induced vascular stiffness and senescence. Intriguingly, FNDC5 was detected in human and mouse blood-derived EVs, and exercise-induced FNDC5/irisin-enriched EVs showed potent anti-stiffness and anti-senescence effects in vivo and in vitro. Adeno-associated virus-mediated rescue of FNDC5 specifically in muscle but not liver in FNDC5 knockout mice, promoted the release of FNDC5/irisin-enriched EVs into circulation in response to exercise, which ameliorated vascular stiffness, senescence, and inflammation. Mechanistically, irisin activated DnaJb3/Hsp40 chaperone system to stabilize SIRT6 protein in an Hsp70-dependent manner. Finally, plasma irisin concentrations were positively associated with exercise time but negatively associated with arterial stiffness in a proof-of-concept human study. CONCLUSION: FNDC5/irisin-enriched EVs contribute to exercise-induced protection against vascular ageing. These findings indicate that the exerkine FNDC5/irisin may be a potential target for ageing-related vascular comorbidities.


Assuntos
Vesículas Extracelulares , Sirtuínas , Humanos , Camundongos , Animais , Idoso , Pré-Escolar , Fibronectinas/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Envelhecimento , Angiotensina II/farmacologia , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo
10.
Front Bioeng Biotechnol ; 10: 907904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795160

RESUMO

With the rapid development of artificial intelligence, bionic algorithm has been gradually applied in various fields, and neural network has become an important and hot issue in the field of scientific research and engineering in recent years. This article proposes a BP neural network model to predict the capture ability and sensitivity of CO2 in monoethanolamine (MEA) aqueous scrubbing technique from a 2 × 1,000 MW coal-fired power plant expansion project in eastern China. The predicted values agree well with the experimental data with a satisfactory mean square root error (MSRE) ranging from 0.001945 to 0.002372, when the change in the circulation amount of MEA and the accuracy of prediction results of the back propagation neural network (BPNN) algorithm is as high as 96.6%. The sensitivity analysis results suggested that the flue gas amount has a marginal effect on the system performance, while further attention should be paid to the MEA circulation amount, which is crucial to the CO2 capture amount. The temperature profiles show the typical behavior of the reactive absorption column where a temperature bulge can be seen at the bottom of the column due to the high L/G ratio of the experimental and prediction results. The coefficients of correlation R 2 with the change of MEA circulation amount, change of CO2 concentration, and steam consumption are 0.97722, 0.99801, and 0.98258, respectively. These results have demonstrated that the present study has established the BPNN algorithm as a consistent, reliable, and robust system identification tool for CO2 capture by the amine solvent scrubbing technique of operation in coal-fired power plants.

11.
Front Psychol ; 12: 736315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456834

RESUMO

In the conflict-affected era, there is now an urgent need for a peaceful world. Although the relevance of peace in language education, within English as a second language (ESL) or English as a foreign language (EFL), may seem irrelevant to some, the language of peace utilizes an interdisciplinary method that supports students in creating more reasonable discussions. Alternatively, the attention of language teaching is just on the development of cognition in preference to emotions, whereas methods that sustain the theory of the whole person through positive psychology should be presupposed. This review seeks to explore the connection between multiple dimensions of peace and the certain strategies and activities that can be implemented to build peace in EFL/ESL classrooms. Further, the related strategies on the issues, such as self-regulation, engagement, mindfulness, and motivations, are proposed. In a nutshell, the implications of peacebuilding for teachers, teacher-trainers, and future researchers are presented, and new directions for future research are set out.

12.
Theranostics ; 11(9): 4381-4402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754067

RESUMO

Rationale: Nicotinamide adenine dinucleotide+ (NAD+)-boosting therapy has emerged as a promising strategy to treat various health disorders, while the underlying molecular mechanisms are not fully understood. Here, we investigated the involvement of fibronectin type III domain containing 5 (Fndc5) or irisin, which is a novel exercise-linked hormone, in the development and progression of nonalcoholic fatty liver disease (NAFLD). Methods: NAD+-boosting therapy was achieved by administrating of nicotinamide riboside (NR) in human and mice. The Fndc5/irisin levels in tissues and blood were measured in NR-treated mice or human volunteers. The therapeutic action of NR against NAFLD pathologies induced by high-fat diet (HFD) or methionine/choline-deficient diet (MCD) were compared between wild-type (WT) and Fndc5-/- mice. Recombinant Fndc5/irisin was infused to NALFD mice via osmotic minipump to test the therapeutic action of Fndc5/irisin. Various biomedical experiments were conducted in vivo and in vitro to know the molecular mechanisms underlying the stimulation of Fndc5/irisin by NR treatment. Results: NR treatment elevated plasma level of Fndc5/irisin in mice and human volunteers. NR treatment also increased Fndc5 expression in skeletal muscle, adipose and liver tissues in mice. In HFD-induced NAFLD mice model, NR displayed remarkable therapeutic effects on body weight gain, hepatic steatosis, steatohepatitis, insulin resistance, mitochondrial dysfunction, apoptosis and fibrosis; however, these actions of NR were compromised in Fndc5-/- mice. Chronic infusion of recombinant Fndc5/irisin alleviated the NAFLD pathological phenotypes in MCD-induced NAFLD mice model. Mechanistically, NR reduced the lipid stress-triggered ubiquitination of Fndc5, which increased Fndc5 protein stability and thus enhanced Fndc5 protein level. Using shRNA-mediated knockdown screening, we found that NAD+-dependent deacetylase SIRT2, rather than other sirtuins, interacts with Fndc5 to decrease Fndc5 acetylation, which reduces Fndc5 ubiquitination and stabilize it. Treatment of AGK2, a selective inhibitor of SIRT2, blocked the therapeutic action of NR against NAFLD pathologies and NR-induced Fndc5 deubiquitination/deacetylation. At last, we identified that the lysine sites K127/131 and K185/187/189 of Fndc5 may contribute to the SIRT2-dependent deacetylation and deubiquitination of Fndc5. Conclusions: The findings from this research for the first time demonstrate that NAD+-boosting therapy reverses NAFLD by regulating SIRT2-deppendent Fndc5 deacetylation and deubiquitination, which results in a stimulation of Fndc5/irisin, a novel exerkine. These results suggest that Fndc5/irisin may be a potential nexus between physical exercise and NAD+-boosting therapy in metabolic pathophysiology.


Assuntos
Fibronectinas/metabolismo , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Ubiquitinação/fisiologia
13.
Clin Exp Pharmacol Physiol ; 48(2): 238-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33051888

RESUMO

Glucose homeostasis is tightly controlled by balance between glucose production and uptake in liver tissue upon energy shortage condition. Altered glucose homeostasis contributes to the pathophysiology of metabolic disorders including diabetes and obesity. Here, we aimed to analyse the change of proteomic profile upon prolonged fasting in mice with isobaric tag for relative and absolute quantification (iTRAQ) labelling followed by liquid chromatography-mass spectrometry (LC/MS) technology. Adult male mice were fed or fasted for 16 hours and liver tissues were collected for iTRAQ labelling followed by LC/MS analysis. A total of 322 differentially expressed proteins were identified, including 189 upregulated and 133 downregulated proteins. Bioinformatics analyses, including Gene Ontology analysis (GO), Kyoto encyclopaedia of genes and genomes analysis (KEGG) and protein-protein interaction analysis (PPI) were conducted to understand biological process, cell component, and molecular function of the 322 differentially expressed proteins. Among 322 hepatic proteins differentially expressed between fasting and fed mice, we validated three upregulated proteins (Pqlc2, Ehhadh and Apoa4) and two downregulated proteins (Uba52 and Rpl37) by western-blotting analysis. In cultured HepG2 hepatocellular cells, we found that depletion of Pqlc2 by siRNA-mediated knockdown impaired the insulin-induced glucose uptake, inhibited GLUT2 mRNA level and suppressed the insulin-induced Akt phosphorylation. By contrast, knockdown of Pqlc2 did not affect the cAMP/dexamethasone-induced gluconeogenesis. In conclusion, our study provides important information on protein profile change during prolonged fasting with iTRAQ- and LC-MS/MS-based quantitative proteomics, and identifies Pqlc2 as a potential regulator of hepatic glucose metabolism and insulin signalling pathway in this process.


Assuntos
Proteômica , Animais , Glucose , Masculino , Camundongos , Transdução de Sinais
14.
Br J Pharmacol ; 178(10): 2111-2130, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037512

RESUMO

BACKGROUND AND PURPOSE: Non-alcoholic fatty liver disease (NAFLD) is a worldwide public health problem with no established pharmacological therapy. Here, we explored the potential benefit of P7C3-A20, a novel aminopropyl carbazole compound with neuroprotective activity, in a NAFLD model, induced in mice by a high-fat diet (HFD). EXPERIMENTAL APPROACH: C57BL/6J mice were given a HFD (42% fat content) for 16 weeks to induce NAFLD. P7C3-A20 (20 mg·kg-1 ·day-1 ) was given by gavage for 2 weeks. Indirect calorimetry, histological analysis, immunoblotting, immunohistochemistry, and biomedical examinations were performed. Gut microbiota were determined using a 16S ribosomal RNA sequencing analysis. KEY RESULTS: P7C3-A20 treatment reduced body weight gain/adiposity, improved insulin resistance, promoted energy expenditure (O2 consumption/CO2 production), inhibited lipid oxidation, suppressed hepatic inflammation (Kupffer cell number and pro-inflammatory factors), decreased necroptosis/apoptosis (receptor-interacting protein kinase 3, cleaved caspase-3, and TUNEL), and alleviated liver fibrosis and injury. Mechanistically, P7C3-A20 stimulated FGF21 and FGF1 via activating liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), which further resulted in a reduced nuclear translocation of CREB-regulated transcription coactivator 2 (CRTC2). In AMPKα2 knockout mice, the protection of P7C3-A20 against HFD-induced metabolism abnormalities and fat accumulation, as well as the elevation of blood FGF21 and FGF1, was abolished. P7C3-A20 increased the gut microbiota species richness. Moreover, it enhanced the proportions of Akkermansia, Lactobacillus, and Prevotellaceae, while reducing the proportions of Enterobacteriaceae, Escherichia, and Parasutterella. CONCLUSIONS AND IMPLICATIONS: P7C3-A20 increased levels of NAD+ and alleviated NAFLD through stimulating FGF21 and FGF1 in an LKB1/AMPK/CRTC2-dependent manner and shaping gut microbiota. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Assuntos
Carbazóis/farmacologia , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases Ativadas por AMP , Animais , Dieta Hiperlipídica , Fator 1 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
15.
Otol Neurotol ; 40(4): 419-429, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30870347

RESUMO

OBJECTIVES: In recent decades, intratympanic gentamicin (ITG) has increasingly been used to treat intractable Menière's disease (MD). We performed a meta-analysis of pooled clinical outcomes, exploring whether ITG was effective and safe. DATA SOURCES: Cochrane Library database, Embase, and Medline. STUDY SELECTION: We searched scientific and medical databases to March 2018 for articles evaluating clinical outcomes after ITG treatment of intractable MD according to the American Academy of Otolaryngology Head and Neck Surgery (AAO-HNS) guidelines. DATA EXTRACTION: We performed a meta-analysis to evaluate treatment efficacy and safety. Quantitative and descriptive information of included RCTs was obtained. DATA SYNTHESIS: We ultimately evaluated 49 of the initially retrieved 1,062 citations (the 49 articles included data from a total of 2,344 MD patients). In almost all studies, patients served as their own controls; "before-and-after" clinical outcomes were reported. The I metric was used to explore heterogeneity. CONCLUSION: Overall, our results seem to provide the limited evidence about efficacy and toxicity effects of ITG. However, clinical outcomes require further confirmation; many included studies were poorly designed, less than 2 years for reporting results in MD are in the majority of patients. More long-term prospective follow-up, high-quality, large-scale, randomized controlled trials are needed to confirm that ITG is safe and effective when used to treat intractable MD.


Assuntos
Gentamicinas/administração & dosagem , Doença de Meniere/tratamento farmacológico , Inibidores da Síntese de Proteínas/administração & dosagem , Humanos , Injeção Intratimpânica , Resultado do Tratamento
16.
Oncotarget ; 8(49): 86503-86514, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156811

RESUMO

FcGBP was normally found in intestinal and colonic epithelia, gallbladder, cystic duct, bronchus, submandibular gland, cervix uteri and in fluids secreted by these cells in humans, and was down-regulated during colon carcinogenesis. We found FcGBP gene expression was decreased in HNSCC tissues compared to surgical safety border tissues while TGF-ß expression level increased in HNSCC tissues, and higher FcGBP expression level was correlated to longer OS time of HNSCC patients. FcGBP expression level was higher in HPV-positive HNSCC tissues compared to HPV-negative HNSCC tissues, while TGF-ß expression level was lower in HPV-positive HNSCC tissues. Gene expression level of FcGBP and TGF-ß was negatively correlated in HNSCC tissues. FcGBP expression level increased after HPV E6 overexpression in HPV-negative HNSCC cells, and TGF-ß could inhibit the up-regulation of FcGBP after HPV E6 or FcGBP overexpression in HPV-negative HNSCC cells. The migration capability was inhibited after FcGBP overexpression, and TGF-ß could counteract the inhibition of migration caused by FcGBP overexpression. FcGBP gene expression level was correlated to the expression levels of EMT markers. In conclusion, FCGBP expression was upregulated by HPV infection while inhibited by TGF-ß, and was correlated to the prognosis of HNSCC patients.

17.
J Cancer Res Ther ; 12(Supplement): 72-75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27721259

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the expression of excision repair cross-complementation group 1 (ERCC1) in locoregionally advanced nasopharyngeal carcinoma (NPC) treated with cisplatin-based induction chemotherapy. METHODS: Eighty-five patients with locoregionally advanced NPC treated with cisplatin-based induction chemotherapy were included in this study. The expression level of ERCC1 protein in cancer tissues was detected by immunohistochemistry, and the expression level was divided into the high- and low-expression groups according to their expression level. The objective response rate (ORR) and the long-term disease control rate of two groups were compared between the two groups. RESULTS: The expression level of ERCC1 in NPC tissues was detected by immunohistochemistry. Forty-one cases had the high ERCC1 expression, and 44 cases had the low ERCC1 expression. The cases for complete response, partial response, stable disease, and progression disease were 1, 19, 21 in the ERCC1 high expression group and 3, 29, 12 for the ERCC1 low-expression group which indicated that the ORR in ERCC1 low group were significant higher than that of ERCC1 high expression group (P < 0.05). The 5-year overall survival, 5-year disease-free survival (DFS), and 5-year local recurrence-DFS were not statistical different between two group (P < 0.05); but the 5-year distant-DFS for ERCC1 low group were significant higher than ERCC1 high group (P < 0.05). CONCLUSION: Cisplatin-induced short-term ORR was decreased in nasopharyngeal carcinoma patients with high ERCC1 expression, which increased the risk of metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Expressão Gênica , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Adulto , Carcinoma , Cisplatino/administração & dosagem , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Estadiamento de Neoplasias , Análise de Sobrevida , Resultado do Tratamento
18.
J Cancer Res Clin Oncol ; 142(12): 2461-2468, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27601166

RESUMO

PURPOSE: Although desmocollins have an important position in cancer-related research, there are little reports about the relations between cancers and desmocollin 1 (DSC1). The present study was designed to investigate the correlations between DSC1 and head and neck squamous cell carcinoma (HNSCC). METHODS: First we analyzed the GEO database; then, HNSCC and pericarcinous tissues were collected to verify the results. DSC1 expression was detected by western blot and real-time PCR. The co-expression genes of DSC1 were extracted from Cancer Cell Line Encyclopedia database (CCLE database), and their correlation was analyzed in The Cancer Genome Atlas HNSCC database (TCGA HNSCC database). Next the gene ontology analysis (GO) was carried out. Moreover, we suppressed DSC1 in FaDu cell to investigate the internal mechanism. RESULTS: GEO database showed that DSC1 was higher in HNSCC and patients with higher DSC1 had unfavorable prognosis. The results of the samples showed that DSC1 was significantly higher in HNSCC than in normal tissue, which was consistent with the results of GEO database. The co-expression genes of DSC1 were extracted from CCLE database and verified in TCGA HNSCC database. It revealed that DSC1 was related to cell signal transduction. In FaDu/siDSC1 cells, the proliferation and migration were decreased compared to FaDu cells, and the expression levels of ß-catenin, c-myc and cyclin D1 down-regulated significantly. CONCLUSIONS: The increased expression of DSC1 can promote the occurrence of HNSCC and is associated with tumor. The increased expression of DSC1 also indicates a poor prognosis of the patients with HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Diferenciação Celular/genética , Desmocolinas/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Desmocolinas/metabolismo , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...