Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(15)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36731170

RESUMO

The Ginzburg-Landau theory, which was introduced to phenomenologically describe the destruction of superconductivity by a magnetic field at the beginning, has brought up much more knowledge beyond the original one as a mean-field theory of thermodynamics states. There the complex order parameter plays an important role. Here we propose a macroscopic theory to describe the features of ferroelectrics by a two-component complex order parameter coupled to nonabelian gauge potentials that provide more freedom to reflect interplays between different measurables. Within this theoretical framework, some recently discovered empirical static and time-independent phenomena, such as vortex, anti-vortex, spiral orders can be obtained as solutions for different gauge potentials. It is expected to bring in a new angle of view with more elucidation than the traditional one that takes the polarization as order parameter.

2.
Opt Express ; 27(3): 3180-3189, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732343

RESUMO

Ultrafast imaging and manipulating transient molecular structures in chemical reactions and photobiological processes is a fundamental but challenging goal for scientists. Theoretically, the challenge originates from the complex multiple-time-scale correlated electron dynamics and their coupling with the nuclei. Here, we employ classical polyatomic models for this kind of study and take the Coulomb explosion of argon and neon trimers in strong laser fields as an illuminating example. Our results demonstrate that the degree of asymmetry on the kinetic energy release (KER) spectrum, together with a Dalitz plot, constitutes a powerful tool for retrieving the ionization, excitation, and polarization configurations (femtosecond-to-attosecond time-scale electron dynamics) of trimers under strong-field radiation.

3.
Opt Lett ; 42(19): 3952-3955, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957169

RESUMO

We investigate the nonlinear Ramsey interferometry of a bosonic Josephson junction coupled to an optical cavity by applying two identical pumping field pulses separated by a holding field in the time domain. When the holding field is absent, we show that the atomic Ramsey fringes are sensitive to both the cavity-pump detuning and the initial state, and their periods can encode the information on both the atom-field coupling and the atom-atom interaction. For a weak holding field, we find that the fringes characterized by the oscillation of the intra-cavity photon number can completely reflect the frequency information of the atomic interference due to the weak atom-cavity coupling. This finding allows a nondestructive observation of the atomic Ramsey fringes via the cavity transmission spectra.

4.
Sci Rep ; 6: 25292, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125998

RESUMO

In the presence of very deep well potential, electrons will spontaneously occupy the empty embedded bound states and electron-positron pairs are created by means of a non-perturbative tunneling process. In this work, by slowly oscillating the width or depth, the population transfer channels are opened and closed periodically. We find and clearly show that by the non-synchronous ejections of particles, the saturation of pair number in a static super-critical well can be broken, and electrons and positrons can be pumped inexhaustibly from vacuum with a constant production rate. In the adiabatic limit, final pair number after a single cycle has quantized values as a function of the upper boundary of the oscillating, and the critical upper boundaries indicate the diving points of the bound states.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25215799

RESUMO

We investigate the quantum transport dynamics governed by the nonlinear Schrödinger equation with a periodically-δ-kicking potential and discover the emergence of a directed current in momentum space. With the increase of nonlinearity, we find strikingly that the momentum current decreases, reverses, and finally vanishes, indicating that the quantum transport can be effectively manipulated through adjusting the nonlinearity. The underlying dynamic mechanism is uncovered and some important implications are addressed.


Assuntos
Modelos Teóricos , Dinâmica não Linear , Probabilidade , Teoria Quântica
6.
Artigo em Inglês | MEDLINE | ID: mdl-24125324

RESUMO

Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semiclassical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (the zero-phase mode) and four in the self-trapping regime (the π-phase mode), are clearly shown. Systematic investigations of the common features behind these different scenarios are performed. We show that the average energies of the two species merge at the MS transition point. The scaling of the power law near the MS transition is verified and the critical exponent is 1/2 for all of the different scenarios for MS. We also illustrate MS in a three-dimensional phase space; from this illustration, more detailed information on the dynamical process can be obtained. In particular, by analyzing the Poincaré sections with changing interspecies interactions, we find that the two-species BJJ exhibits separatrix crossing behavior at the MS transition point and such behavior depicts the general mechanism behind the different scenarios for the MS transitions. The new critical behavior found in a two-species BJJ is expected to be found in real systems of atomic Bose gases.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 2): 016607, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697747

RESUMO

For classical Hamiltonian systems, the adiabatic condition may fail at some critical points. However, the breakdown of the adiabatic condition does not always cause the adiabatic evolution to be destroyed. In this paper, we suggest a supplemental condition of the adiabatic evolution for the fixed points of classical Hamiltonian systems when the adiabatic condition breaks down at the critical points. As an example, we investigate the adiabatic evolution of the fixed points of a classical Hamiltonian system which has a number of applications.

8.
Phys Rev Lett ; 92(13): 130404, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15089588

RESUMO

We generalize the correlation functions of the Clauser-Horne-Shimony-Holt (CHSH) inequality to arbitrarily high-dimensional systems. Based on this generalization, we construct the general CHSH inequality for bipartite quantum systems of arbitrarily high dimensionality, which takes the same simple form as CHSH inequality for two dimensions. This inequality is optimal in the same sense as the CHSH inequality for two-dimensional systems, namely, the maximal amount by which the inequality is violated consists of the maximal resistance to noise. We also discuss the physical meaning and general definition of the correlation functions. Furthermore, by giving another specific set of the correlation functions with the same physical meaning, we realize the inequality presented by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)]].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA