Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 326: 138341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36925008

RESUMO

The environmental and ecological consequences of nanoplastics (NPs) draw increasing research interests and social concerns. However, the in situ and real-time detection of NPs from living organisms and transferring media remains as a major technical obstacle for scientific investigation. Herein we report a novel time-gated imaging (TGI) strategy capable of real-time visualizing the intake of NPs by an individual living organism, which is based on the polystyrene NPs labelled with lanthanide up-conversion luminescence. The limit of detection (LOD) of the TGI apparatus was 600 pg (SNR = 3) in a field of view of 2.4 × 3.8 mm. Taking Daphnia magna as the aquatic model, we investigated the dynamics of uptake and accumulation of NPs (500 µg/L) for 24 h, and the subsequent excretion process (in clean medium) for 48 h, and quantitively analyzed the distribution and the overall mass of NPs deposited in D. magna. The uptake of NPs via filter-feeding occurred in a few minutes, whereas a longer accumulation was found, in a timescale of several hours. And similar behaviors (bi-phase elimination) were also seen in the excretion, indicating the migration of NPs into the circulatory system. The average mass of NPs accumulated in an individual D. magna was ∼12 ng after 24 h exposure, indicating that D. magna as a filter feeder tends to retain NPs. The observed NPs accumulation in D. magna exemplifies the potential risk of aquatic ecosystem on exposure to NP contamination.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Daphnia , Poliestirenos , Ecossistema , Luminescência , Imagem Óptica , Poluentes Químicos da Água/toxicidade
2.
J Phys Chem Lett ; 14(7): 1934-1940, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36786710

RESUMO

Constructing a two- and three-dimensional (2D/3D) heterojunction structure on the surface of a 3D perovskite film, termed 2D/3D engineering, is effective in elevating the stability of perovskite polycrystal-based photovoltaic and photoelectronic devices; however, it remains controversial whether this protocol is favorable or detrimental to the device performance. Here, we prepare a series of 2D/3D perovskite films by post-treating the perovskite polycrystalline film with different concentrations of phenethylammonium iodide (PEAI). Systematic spectroscopy and electrochemical studies illustrate that PEAI can penetrate the 3D perovskite network and eliminate the intrinsic trap states of perovskite polycrystals, while the 2D perovskite nanosheets enriched on the top of the polycrystalline film may introduce additional trap states, which manipulate the photoluminescence performance and dynamics of the as-prepared perovskite films in an opposite manner. Based on this finding, the strategy of optimizing the photophysical properties of the host 3D perovskite through 2D/3D engineering is elaborated, paving the way for fabricating high-performance and high-stability perovskite polycrystalline films.

3.
iScience ; 26(1): 105761, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36594012

RESUMO

The light-harvesting complex II of Bryopsis corticulans (B-LHCII), a green alga, differs from that of spinach (S-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of B-LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield (Φ FL) of LHCII and spectroelectrochemical (SEC) spectra of Chl a and b were measured to assist the spectral analysis. Red-light excitation at Chl Qy-band, but not Car-band, induced transient features resembling the characteristic SEC spectra of Chl a ⋅+ and Chl b ⋅-, indicating ultrafast photogeneration of Chl-Chl charge transfer (CT) species; Φ FL and 3Car∗ declined whereas CT species increased upon prolonging excitation wavelength, showing positive correlation of 1Chl∗ deactivation with Chl-Chl CT formation. Moreover, ultrafast Chl b-to-Chl a and Car-to-Chl singlet excitation transfer were illustrated. The red-light induction of Chl-Chl CT species, as also observed for S-LHCII, is considered a general occurrence for LHCIIs in light-harvesting form.

4.
Biophys Chem ; 275: 106624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051444

RESUMO

Singlet oxygen (1O2) formed through photosensitization may initiate oxidative destruction of biomembranes, however, the influence from the spatial organization of photosensitizers (PS) relative to membranes remains unclear. To clarify this issue, we loaded riboflavin 5'-(dihydrogen phosphate) monosodium (FMN-Na) as a hydrophilic PS into the lumen of halloysite nanotubes (HNTs), and attached the nanoassemblies (FMN-Na@HNTs), via Pickering effects, to the outer surfaces of giant unilamellar vesicles (GUVs) of phospholipids. We also prepared GUVs dopped with lumiflavin (LF) as a lipophilic PS having a 1O2 quantum yield comparable to FMN-Na. FMN-Na capsulated in HNT was characterized by a longer triplet excited state lifetime (12.1 µs) compared to FMN-Na free in solution (7.5 µs), and FMN-Na in both forms efficiently generated 1O2 upon illumination. The spatio-effects of PS on the photosensitized morphological changes of membranes were studied using conventional optical microscopy by monitoring GUV morphological changes. Upon light exposure (400-440 nm), the GUVs attached with FMN-Na@HNT merely experienced membrane deformation starting from the original spherical shape, ascribed to Type II photosensitization with 1O2 as oxidant. In contrast, photooxidation of LF dopped GUVs mainly led to membrane coarsening and budding assigned to Type I photosensitization. The spatial effects of PS on photosensitized morphological changes were related to the different lipid oxidation products generated through Type I and Type II photosensitized lipid oxidation.


Assuntos
Lipossomas Unilamelares , Oxirredução , Fármacos Fotossensibilizantes , Oxigênio Singlete
5.
ACS Nano ; 15(3): 4518-4533, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33619957

RESUMO

Herein, a functional class of microenvironment-associated nanomaterials is reported for improving the second near-infrared (NIR-II) imaging and photothermal therapeutic effect on intracranial tumors via a spontaneous membrane-adsorption approach. Specific peptides, photothermal agents, and biological alkylating agents were designed to endow the nanogels with high targeting specificity, photothermal properties, and pharmacological effects. Importantly, the frozen scanning electron microscopy technology (cryo-SEM) was utilized to observe the self-association of nanomaterials on tumor cells. Interestingly, the spontaneous membrane-adsorption behavior of nanomaterials was captured through direct imaging evidence. Histological analysis showed that the cross-linking adhesion in intracranial tumor and monodispersity in normal tissues of the nanogels not only enhanced the retention time but also ensured excellent biocompatibility. Impressively, in vivo data confirmed that the microenvironment-associated nanogels could significantly enhance brain tumor clearance rate within a short treatment timeframe (only two weeks). In short, utilizing the spontaneous membrane-adsorption strategy can significantly improve NIR-II diagnosis and phototherapy in brain diseases while avoiding high-risk complications.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Adsorção , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Humanos , Nanogéis , Fototerapia , Microambiente Tumoral
6.
Chemistry ; 26(71): 17222-17229, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33006821

RESUMO

A series of two-coordinate AuI and CuI complexes (3 a, 3 b and 5 a, 5 b) are reported as new organometallic thermally activated delayed fluorescence (TADF) emitters, which are based on the carbene-metal-carbazole model with a pyridine-fused 1,2,3-triazolylidene (PyTz) ligand. PyTz features low steric hindrance and a low-energy LUMO (LUMO=-1.47 eV) located over the π* orbitals of the whole ligand, which facilitates intermolecular charge transfer between a donor (carbazole) and an accepter (PyTz). These compounds exhibit efficient TADF with microsecond lifetimes. Temperature-dependent photoluminescence kinetics of 3 a supports a rather small energy gap between S1 and T1 (ΔE S 1 - T 1 =60 meV). Further experiments reveal that there are dual-emission properties from a monomer-dimer equilibrium in solution, exhibiting single-component multicolor emission from blue to orange, including white-light emission.

7.
J Biomed Opt ; 24(6): 1-11, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31222991

RESUMO

Noninvasive and real-time visualization of the thoracoepigastric veins (TVs) of living mice was demonstrated by using two-photon excitation (TPE) optical imaging with a Eu-luminescent polymeric nanoagent as the angiographic contrast. The spatiotemporal evolution of the polymeric nanoagent in TVs was monitored for up to 2 h by TPE time-resolved (TPE-TR) bioimaging, which is free from the interference of tissue autofluorescence. A wide field-of-view covering the thoracoabdominal region allowed the visualization of the entire TV network with an imaging depth of 1 to 2 mm and a lateral resolution of 80 µm at submillimeter. Detailed analysis of the uptake, transport, and clearance processes of the polymeric nanoagent revealed a clearance time constant of ∼30 min and an apparent clearance efficiency of 80% to 90% for the nanoagent in both axial and lateral TVs. TPE-TR imaging of the dissected internal organs proved that the liver is mainly responsible for the sequestration of the nanoagent, which is consistent with the apparent retention efficiency of liver, ∼32 % , as determined by the real-time in vivo TV imaging. We demonstrate the potency of TPE-TR modality in the pharmacokinetics imaging of the peripheral vascular systems of animal models, which can be beneficial for related nanotheranostics study.


Assuntos
Nanoestruturas/análise , Imagem Óptica/métodos , Estômago/irrigação sanguínea , Cavidade Torácica/irrigação sanguínea , Veias/diagnóstico por imagem , Animais , Camundongos , Nanopartículas/análise , Fótons
8.
ChemistryOpen ; 8(3): 388-392, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976479

RESUMO

The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine], exhibiting well-separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time-resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.

9.
Phys Chem Chem Phys ; 21(10): 5409-5415, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785439

RESUMO

The compositional engineering is of great importance to tune the electrical and optical properties of perovskite and improve the photovoltaic performance of perovskite solar cells. The exploration of the corresponding photoelectric conversion processes, especially the carrier recombination dynamics, will contribute to the optimization of the devices. In this work, perovskite with mixed methylammonium (MA) and formamidinium (FA) as organic cations, MA0.4FA0.6PbI3, is fabricated to study the influence of the bi-cation on the charge carrier recombination dynamics. X-ray diffraction analysis indicates the existence of the MAPbI3-FAPbI3 phase segregation in the bi-cationic perovskite crystal. The time-resolved photoluminescence dynamics presents a relatively fast carrier recombination process ascribed to the charge transfer from MAPbI3 to FAPbI3 in the bi-cationic perovskite film. The carrier recombination dynamics investigated by transient photovoltage measurements reveals a biphasic trap-assisted carrier recombination mechanism in the bi-cationic device, which involves carrier recombination in the MAPbI3 phase and FAPbI3 phase, respectively. The ultimate presentation of the carrier recombination process is closely related to the charge transfer between the two perovskite phases.

10.
Environ Sci Technol ; 53(3): 1471-1481, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30605315

RESUMO

This work reports the in vivo uptake and translocation of PNPs in the one-year grown terrestrial plant, Murraya exotica ( M. exotica), as investigated by two-photon excitation and time-resolved (TPE-TR) optical imaging with a large field of view (FOV, 32 × 32 mm2) in a noninvasive and real-time manner. The PNPs (⟨ Rh⟩ = 12 ± 4.5 nm) synthesized from poly(styrene- co-maleic anhydride) (SMA) were Eu-luminescence labeled (λL ≈ 617 nm). On exposing the roots of living M. exotica plants to the colloidal suspension of SMA PNPs at different concentrations, the spatiotemporal evolution of SMA PNPs along plant stems (60 mm in length) were monitored by TPE-TR imaging, which rendered rich information on the uptake and translocation of PNPs without any interference from the autofluorescence of the plant tissues. The TPE-TR imaging combined with the high-resolution anatomy revealed an intercell-wall route in the lignified epidermis of M. exotica plants for SMA PNP uptake and translocation, as well as the similar accumulation kinetics at different positions along the plant stems. We modeled the accumulation kinetics with Gaussian distribution to account for the trapping probability of a SMA PNP by the lignified cell walls, allowing the statistical parameters, the average trapping time ( tm) and its variance (σ), to be derived for the quantification of the PNP accumulation in individual plants. The TPE-TR imaging and the analysis protocols established herein will be helpful in exploring the mechanism of plant-PNP interaction under physiological condition.


Assuntos
Murraya , Nanopartículas , Anidridos Maleicos , Imagem Óptica , Estireno
11.
Biomaterials ; 190-191: 86-96, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408640

RESUMO

Phototherapy has drawn increasing attention including the use of nanocarriers with high drug loading capacity and delivery efficacy for target-specific therapy. We have made use of naturally-occurring halloysite nanotubes (HNTs) to build a biomimetic nanocarrier platform for target-specific delivery of phototherapeutic agents. The HNTs were decorated with poly(sodium-p-styrenesulfonate) (PSS) to enhance the biocompatibility, and were further functionalized by lumen loading the type-II photosensitizer indocyanine green (ICG). The HNT-PSS-ICG nanocarrier, without further tethering targeting groups, was shown to associate with the membrane of giant unilamellar vesicles (GUVs) via Pickering effects. Application of HNT-PSS-ICG nanocarrier to human breast cancer cells gave rise to a cell mortality as high as 95%. The HNT-PSS-ICG nanocarrier was further coated with MDA-MB-436 cell membranes to endow it with targeting therapy performance against breast cancer, which was confirmed by in vivo experiments using breast cancer tumors in mice. The membrane-coated and biocompatible nanocarrier preferentially concentrated in the tumor tissue, and efficiently decreased the tumor volume by a combination of photodynamic and photothermal effects upon near-infrared light exposure. Our results demonstrate that the HNT-based nanocarrier by virtue of facial preparation and high loading capacity can be a promising candidate for membrane-targeting nanocarriers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Verde de Indocianina/administração & dosagem , Nanotubos/química , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Verde de Indocianina/uso terapêutico , Camundongos Nus , Nanotubos/ultraestrutura , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/química , Ácidos Sulfônicos/química
12.
Rev Sci Instrum ; 89(8): 085105, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184676

RESUMO

Understanding nanocarrier pharmacokinetics is crucial for the emerging nanopharmacy, which highly demands noninvasive and real-time visualization of the in vivo dynamics of nanocarriers. To this end, we have developed a 2-photon excitation and time-resolved (TPE-TR) bioimaging apparatus for the analysis of the spatial distribution and temporal evolution of nanocarriers in living model animals. The specific polymeric nanocarrier, Eu@pmma-maa doped with Eu-complexes luminescing in long persistence at ∼615 nm upon near-infrared 2-photon excitation, allows the complete rejection of tissue autofluorescence by selective luminescence detection. This together with a unique beam shaping scheme for homogeneous line excitation, a delicate timing strategy for single-shot line scanning, and an equal optical path design for in-plane scan endows the TPE-TR apparatus with the following prominent features: an imaging depth of ∼10 mm, a field of view (FOV) of 32 × 32 mm2 along with a horizontal resolution of ∼60 µm, a sub-10 s frame time, and negligible laser heating effect. In addition, a combination of the in-plane line scan with the 3D scan of a model animal offers the convenience for examining an interested FOV with a millimeter vertical resolution. Application of TPE-TR bioimaging to a living mouse reveals rich information on the dynamics of nanocarriers including the spatial distribution and temporal evolution and the kinetics of domains of interest. The noninvasive TPE-TR bioimaging instrumentation with a wide FOV and a large imaging depth will find applications in the pharmaceutical development of nanocarriers and relevant research fields.


Assuntos
Portadores de Fármacos/farmacocinética , Nanopartículas , Nanotecnologia/instrumentação , Imagem Óptica/instrumentação , Animais , Fluorescência , Lasers , Camundongos , Fatores de Tempo , Distribuição Tecidual
13.
J Phys Chem B ; 122(33): 8028-8036, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30080042

RESUMO

To explore the photoprotection role of multicompositional carotenoid (Car) in photosynthetic purple bacteria, we investigated, by means of triplet excitation profile (TEP) combined with steady-state optical spectroscopies, the core light-harvesting complex-reaction center of a mutant strain of Rhodobacter sphaeroides (m-LH1-RC) at room temperature. TEP spectra revealed that spheroidene and derivative (Spe) preferentially protect bacteriochlorophylls (BChls) of relatively lower site energy by quenching the triplet excitation (3BChl*); however, spirilloxanthin (Spx) does so irrespective to the site energy of BChls. Triplet excitation results showed the triplet excitation energy-transfer (EET) reaction in a timescale of ∼0.5 µs from Spe and derivatives as a major component (∼85%) to Spx as a minor component (∼8%), suggesting the coexistence of different kinds of Cars in the individual LH1 complex. The nonequivalent quenching potency and the triplet EET reaction between Cars constitute the cooperative photoprotection by multicompositional Cars in bacterial photosynthesis.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/efeitos da radiação , Carotenoides/efeitos da radiação , Chromatiaceae/química , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Análise Espectral/métodos , Xantofilas/química , Xantofilas/efeitos da radiação
14.
Phys Chem Chem Phys ; 20(9): 6575-6581, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29450420

RESUMO

Organic-inorganic halide perovskites have attracted enormous attention owing to their promising application in photovoltaic devices. The morphology of the perovskites is the key to driving the performance of perovskite devices, which necessitates a systematic study. In this work, two typical morphologies, i.e., flake and cube, of perovskite films are fabricated, and the temperature-dependent optical absorption and photoluminescence properties of the two types of perovskite film are systematically investigated. From the temperature-dependent spectra, both exciton and phase transition temperatures of the flake film are found to be about 10 K lower than those of the cube one. Meanwhile, the influences of the morphology on the exciton binding energy, optical phonon energy and polaron binding energy are quantitatively characterized. The exciton binding of the flake film is nearly three times smaller than that of the cube one, while the phonon coupling energy and the polaron binding energy of the former are about 5 meV and 2 meV larger than those of the latter. Furthermore, the results of photoluminescence lifetime and charge separation efficiency further reveal that the charge carrier kinetics in the two kinds of perovskite films is significantly different. The current study provides a theoretical framework to understand the fundamental physics of perovskites and to promote the design and enhancement of active materials for improved optoelectronic devices.

15.
Anal Chem ; 90(3): 2126-2133, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29298041

RESUMO

We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and ß-carotene (ß-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to ß-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of ß-Car, kΔE is shown to be most sensitive for ß-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for ß-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or ß-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.


Assuntos
Antioxidantes/química , Clorofila A/química , Fármacos Fotossensibilizantes/química , Lipossomas Unilamelares/química , beta Caroteno/química , Clorofila A/efeitos da radiação , Difusão , Luz , Estresse Oxidativo/efeitos da radiação , Fosfatidilcolinas/química , Fármacos Fotossensibilizantes/efeitos da radiação , Oxigênio Singlete/química , Glycine max/química , Lipossomas Unilamelares/efeitos da radiação
16.
ChemSusChem ; 10(24): 4872-4878, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094491

RESUMO

The photovoltaic performance of organic-inorganic hybrid perovskite solar cells has reached a bottleneck after rapid development in last few years. Further breakthrough in this field requires deeper understanding of the underlying mechanism of the photoelectric conversion process in the device, especially the dynamics of charge-carrier recombination. Originating from dye-sensitized solar cells (DSSCs), mesoporous-structured perovskite solar cells (MPSCs) have shown many similarities to DSSCs with respect to their photoelectric dynamics. Herein, by applying the multiple-trapping model of the charge-recombination dynamic process for DSSCs in MPSCs, with rational modification, a novel physical model is proposed to describe the dynamics of charge recombination in MPSCs that exhibits good agreement with experimental data. Accordingly, the perovskite- and TiO2 -dominating charge-recombination processes are assigned and their relationships with the trap-state distribution are also discussed. An optimal balance between these two dynamic processes is required to improve the performance of mesoporous-structured perovskite devices.

17.
J Am Chem Soc ; 139(44): 15984-15993, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29053262

RESUMO

Carotenoids (Cars) in bacterial photosynthesis are known as accessory light harvesters and photoprotectors. Recently, the singlet fission (SF) reaction initiated by Car photoabsorption has been recognized to be an effective excitation deactivation channel disfavoring the light harvesting function. Since the SF reaction and the triplet sensitization reaction underlying photoprotection both yield triplet excited state Cars (3Car*), their contribution to the overall 3Car* photoproduction are difficult to disentangle. To tackle this problem, we resorted to the triplet excitation profiles (TEPs), i.e., the actinic spectra of the overall 3Car* photoproduction. The TEPs combined with the conventional fluorescence excitation spectra allowed us to extract the neat SF contribution, which can serve as a spectroscopic measure for the SF reactivity. This novel spectroscopic strategy was applied to analyze the light harvesting complexes (LHs) from Tch. tepidum and Rba. sphaeroides 2.4.1. The results unambiguously showed that the SF reaction of Cars proceeds with an intramolecular scheme, even in the case of LH1-RC from Rba. sphaeroides 2.4.1 likely binding a secondary pool of Cars. Regarding the SF-reactivity, the geometric distortion in the conjugated backbone of Cars was shown to be the structural determinant, while the length of the Car conjugation was suggested to be relevant to the effective localization of the geminate triplets to avoid being annihilated. The SF reaction scheme and structure-activity relationship revealed herein will be useful not only in deepening our understanding of the roles of Cars in photosynthesis, but also in enlightening the applications of Cars in artificial light conversion systems.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Chromatiaceae/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Chromatiaceae/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Rhodobacter sphaeroides/metabolismo
18.
Molecules ; 22(9)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28872608

RESUMO

A new type of blue emitter, N²-Indolyl-1,2,3-triazoles (NITs), with the λmax ranging from 420-480 nm and the Stokes shift from 89-143 nm, were synthesized through the coupling reaction of indoles with triazole derivatives. The influence of different substitution patterns on the optical properties (efficiency, excitation, and emission wavelengths) of the NITs was investigated. In addition, one palladium complex were synthesized by using NITs as the ligands, which, however, exhibited no fluorescent activity, but did show the enhanced co-planarity. Lastly, two bio-active molecule derivatives were explored for the potential use of these novel dyes in related chemical and biological applications.


Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Indóis/química , Paládio/química , Triazóis/química , Complexos de Coordenação/síntese química , Fluorescência , Corantes Fluorescentes/síntese química , Indóis/síntese química , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Triazóis/síntese química
19.
Phys Chem Chem Phys ; 19(30): 19922-19927, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28721411

RESUMO

Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

20.
Photochem Photobiol Sci ; 16(5): 795-807, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28374036

RESUMO

Low molecular weight (MW) polyols are organic osmolytes influencing protein structure and activity. We have intended to investigate the effects of low MW polyols on the optical and the excited-state properties of the light-harvesting complex 2 (LH2) isolated from the photosynthetic bacterium Thermochromatium (Tch.) tepidum, a thermophile growing at ∼50 °C. Steady state spectroscopy demonstrated that, on increasing glycerol or sorbitol fractions up to 60% (polyol/water, v/v), the visible absorption of carotenoids (Crts) remained unchanged, while the near infrared Qy absorption of bacteriochlorophyll a (BChl) at 800 nm (B800) and 850 nm (B850) varied slightly. Further increasing the fraction of glycerol (but not sorbitol) to 80% (v/v) induced distinct changes of the near infrared absorption and fluorescence spectra. Transient absorption spectroscopy revealed that, following the fast processes of BChl-to-Crt triplet energy transfer, rather weak Qy signals of B800 and B850 remained and evolved in phase with the kinetics of triplet excited state Crt (3Crt*), which are attributed to the Qy band shift as a result of 3Crt*-BChl interaction. The steady state and the transient spectral responses of the Qy bands are found to correlate intimately with the water activity varying against polyol MW and mixing ratio, which are rationalized by the change of the hydration status of the C- and N-termini of LH2. Our results suggest that, with reference to the mesophilic purple bacterium Rhodobacter sphaeroides 2.4.1, Tch. tepidum adopts substantially more robust LH2 hydration against the osmotic effects from the low MW polyols.


Assuntos
Chromatiaceae/química , Complexos de Proteínas Captadores de Luz/química , Polímeros/química , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Complexos de Proteínas Captadores de Luz/metabolismo , Polímeros/metabolismo , Solventes/química , Solventes/metabolismo , Espectrometria de Fluorescência , Análise Espectral Raman , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...