Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5378, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666848

RESUMO

Nanoparticles-based glues have recently been shown with substantial potential for hydrogel adhesion. Nevertheless, the transformative advance in hydrogel-based application places great challenges on the rapidity, robustness, and universality of achieving hydrogel adhesion, which are rarely accommodated by existing nanoparticles-based glues. Herein, we design a type of nanohesives based on the modulation of hydrogel mechanics and the surface chemical activation of nanoparticles. The nanohesives can form robust hydrogel adhesion in seconds, to the surface of arbitrary engineering solids and biological tissues without any surface pre-treatments. A representative application of hydrogel machine demonstrates the tough and compliant adhesion between dynamic tissues and sensors via nanohesives, guaranteeing accurate and stable blood flow monitoring in vivo. Combined with their biocompatibility and inherent antimicrobial properties, the nanohesives provide a promising strategy in the field of hydrogel based engineering.


Assuntos
Hidrogéis , Nanopartículas , Humanos , Engenharia , Fenômenos Físicos , Aderências Teciduais
2.
ACS Appl Mater Interfaces ; 12(38): 43152-43159, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32865957

RESUMO

Interface is the Achilles' heel in flexible electronics, where slipping, delamination, or cracking resulting from the intrinsic mechanical property mismatch of different materials might fail the device or cause degradation. Robust connections with strong interfacial strength and low interfacial impedance are highly desired in all kinds of flexible devices, especially when they require stretchability. Here, a new strategy of employing homogeneity is proposed to facilely achieve robust connection without introducing a third-party interlayer. The key to this strategy is implementing different functions in the same component materials, and in this work, this strategy is demonstrated by exploring the uniformity of carbon nanotube (CNT) in thermoplastic polyurethane (TPU) elastomer. Tuning the uniformity of CNT in TPU elastomer, two kinds of CNT-TPU composites (CTCs) are fabricated. They present contrasting properties of conductivity (281 folds), Young's modulus (7.1 folds), and strain sensitivity (15.7 folds) with the same weight fraction of CNT (15 wt %), and thus they can respectively act as strain sensor and interconnector in all-CNT-based stretchable strain monitoring electronics. The interlocking effect caused by spontaneous entanglement of surface polymer chains and the reconstruction of percolation network at the interface during drying confer the connection with robustness. The practical value of this strategy has been exemplified by the fabrication of a robust epidermis device via additive manufacturing. This epidermis device is patterned in a fractal motif for conformal contact and can sensitively monitor body motions and radial artery pulse.

3.
Angew Chem Int Ed Engl ; 58(44): 15772-15777, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31419007

RESUMO

The anode oxygen evolution reaction (OER) is known to largely limit the efficiency of electrolyzers owing to its sluggish kinetics. While crystalline metal oxides are promising as OER catalysts, their amorphous phases also show high activities. Efforts to produce amorphous metal oxides have progressed slowly, and how an amorphous structure benefits the catalytic performances remains elusive. Now the first scalable synthesis of amorphous NiFeMo oxide (up to 515 g in one batch) is presented with homogeneous elemental distribution via a facile supersaturated co-precipitation method. In contrast to its crystalline counterpart, amorphous NiFeMo oxide undergoes a faster surface self-reconstruction process during OER, forming a metal oxy(hydroxide) active layer with rich oxygen vacancies, leading to superior OER activity (280 mV overpotential at 10 mA cm-2 in 0.1 m KOH). This opens up the potential of fast, facile, and scale-up production of amorphous metal oxides for high-performance OER catalysts.

4.
Langmuir ; 35(12): 4364-4369, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30795647

RESUMO

Copper nanowires (Cu NWs) are among ideal candidates for fabricating various advanced nanodevices, especially flexible electronics and transparent conductive electrodes. However, although many efforts have been made, the commercialization of Cu NWs is still difficult. Herein, we report an in situ seed-mediated two-step strategy to synthesize well-defined Cu NWs in high yield. In the first step, that is, seed formation process, most Cu ions (85%) in situ transform to nondecahedral Cu nanodots (NDs). These Cu NDs can promote the formation of decahedral multiply twinned particles (DMTPs) and the subsequent growth of Cu NWs by selectively inhibiting the spontaneous ripening of nanoparticle (NP) byproducts in the second step. The amount and quality of Cu NDs play an important role in high-yield production of Cu NWs, and the yield was successfully increased to 2.4 times higher than that of the conventional methods. Furthermore, an effective shaking-rotating purification technique was developed to fully separate Cu NWs from the final product solution. After scaling up the reaction, 50 g of high-quality Cu NWs can be produced with a uniform size and high aspect ratio at a very low material cost of $ 0.99/g. These promising results not only provide a high-yield and low-cost synthetic route but also can promote the widespread commercialization of Cu NWs in advanced nanodevices.

5.
J Am Chem Soc ; 139(16): 5890-5895, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28362492

RESUMO

Improving heteroatomic interactions via alloying or forming heterogeneous catalysts is of importance to the enhancement in terms of electrocatalytic activity and stability. In this work, a simple galvanic replacement reaction was utilized to synthesize low Pt-based quaternary nanotubes (NTs). It is easy to obtain PtPdRuTe NTs with different composition and controlled shape using ultrathin Te nanowires (NWs) as sacrificial templates for its high activity. The NT wall thickness and formed NPs on the surface are closely related with the composition, especially Pd content. The optimized incorporation of Pd atoms into ternary PtRuTe NTs formed a uniform protecting PtPd surface and modified the Pt electronic structure to improve the methanol oxidation reaction (MOR) performance. X-ray photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from neighboring atoms to Pt on PtPdRuTe, consequently leading to a weaker bonding of the intermediate on Pt. As a result, the quaternary PtPdRuTe NTs exhibit enhanced activity and stability toward efficient MOR.

6.
J Am Chem Soc ; 137(24): 7862-8, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26011682

RESUMO

This article reports a novel scalable method to prepare ultrathin and uniform Pd@Pt nanowires (NWs) with controllable composition and shell thickness, high aspect ratio, and smooth surface, triggered by bromide ions via a galvanic replacement reaction between PtCl6(2-) and Pd NWs. It was found that bromide ions played a vital role in initiating and promoting the galvanic reaction. The bromide ions served as capping and oxidized etching agents, counterbalancing the Pt deposition and Pd etching on the surface to give final Pd@Pt core-shell nanostructures. Such a counterbalance and the formation PtBr6(2-) with lower redox potential could lower the reaction rate and be responsible for full coverage of a smooth Pt shell. The full coverage of Pt deposited on Pd NWs is important for the enhancement of the activity and stability, which depend strongly on the Pt content and Pt shell thickness. Significantly, the Pd@Pt NWs with Pt content of 21.2% (atomic ratio) exhibited the highest mass activity (810 mA mg(-1)(Pt)) and specific activity (0.4 mA cm(-2)). Interestingly, the mass activity (1560 mA mg(-1)(Pt)) and specific activity (0.98 mA cm(-2)) of Pd@Pt (21.2%) NWs increased to 2.45 and 1.95 times the initial values after 60k cycles tests, 8.5 and 9.0 times greater than those of Pt/C catalysts. In addition, these ultrathin NW electrocatalysts with large aspect ratio are easy to form into a freestanding film, which improves the mass transport, electrical conductivity, and structure stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA