Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 18(5)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433307

RESUMO

Snakes can bend their elongate bodies in various forms to traverse various environments. We understand well how snakes use lateral body bending to push against asperities on flat ground for propulsion, and snake robots can do so effectively. However, snakes can also use vertical bending to push against uneven terrain of large height variation for propulsion, and they can adjust this bending to adapt to novel terrain presumably using mechano-sensing feedback control. Although some snake robots can traverse uneven terrain, few have used vertical bending for propulsion, and how to control this process in novel environments is poorly understood. Here we systematically studied a snake robot with force sensors pushing against large bumps using vertical bending to understand the role of sensory feedback control. We compared a feedforward controller and four feedback controllers that use different sensory information and generate distinct bending patterns and body-terrain interaction. We challenged the robot with increasing backward load and novel terrain geometry that break its contact with the terrain. We further varied how much the feedback control modulated body bending to conform to or push against the terrain to test their effects. Feedforward propagation of vertical bending generated large propulsion when the bending shape matched terrain geometry. However, when perturbations caused loss of contact, the robot easily lost propulsion or had motor overload. Contact feedback control resolved these issues by helping the robot regain contact. Yet excessive conformation interrupted shape propagation and excessive pushing stalled motors frequently. Unlike that using lateral bending, for propulsion generation using vertical bending, body weight that can help maintain contact with the environment but may also overload motors. Our results will help snake robots better traverse uneven terrain with large height variation and can inform how snakes use sensory feedback to control vertical body bending for propulsion.


Assuntos
Locomoção , Robótica , Humanos , Retroalimentação , Robótica/métodos , Retroalimentação Sensorial , Peso Corporal , Fenômenos Biomecânicos
3.
Bioinspir Biomim ; 17(3)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35235918

RESUMO

Terrestrial locomotion requires generating appropriate ground reaction forces which depend on substrate geometry and physical properties. The richness of positions and orientations of terrain features in the 3D world gives limbless animals like snakes that can bend their body versatility to generate forces from different contact areas for propulsion. Despite many previous studies of how snakes use lateral body bending for propulsion on relatively flat surfaces with lateral contact points, little is known about whether and how much snakes use vertical body bending in combination with lateral bending in 3D terrain. This lack had contributed to snake robots being inferior to animals in stability, efficiency, and versatility when traversing complex 3D environments. Here, to begin to elucidate this, we studied how the generalist corn snake traversed an uneven arena of blocks of random height variation five times its body height. The animal traversed the uneven terrain with perfect stability by propagating 3D bending down its body with little transverse motion (11° slip angle). Although the animal preferred moving through valleys with higher neighboring blocks, it did not prefer lateral bending. Among body-terrain contact regions that potentially provide propulsion, 52% were formed by vertical body bending and 48% by lateral bending. The combination of vertical and lateral bending may dramatically expand the sources of propulsive forces available to limbless locomotors by utilizing various asperities available in 3D terrain. Direct measurements of contact forces are necessary to further understand how snakes coordinate 3D bending along the entire body via sensory feedback to propel through 3D terrain. These studies will open a path to new propulsive mechanisms for snake robots, potentially increasing the performance and versatility in 3D terrain.


Assuntos
Retroalimentação Sensorial , Locomoção , Animais , Fenômenos Biomecânicos , Movimento (Física)
4.
J Exp Biol ; 224(Pt 6)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33536306

RESUMO

Limbless animals such as snakes, limbless lizards, worms, eels and lampreys move their slender, long bodies in three dimensions to traverse diverse environments. Accurately quantifying their continuous body's 3-D shape and motion is important for understanding body-environment interactions in complex terrain, but this is difficult to achieve (especially for local orientation and rotation). Here, we describe an interpolation method to quantify continuous body 3-D position and orientation. We simplify the body as an elastic rod and apply a backbone optimization method to interpolate continuous body shape between end constraints imposed by tracked markers. Despite over-simplifying the biomechanics, our method achieves a higher interpolation accuracy (∼50% error) in both 3-D position and orientation compared with the widely used cubic B-spline interpolation method. Beyond snakes traversing large obstacles as demonstrated, our method applies to other long, slender, limbless animals and continuum robots. We provide codes and demo files for easy application of our method.


Assuntos
Lagartos , Locomoção , Animais , Fenômenos Biomecânicos , Movimento (Física) , Serpentes
5.
R Soc Open Sci ; 7(2): 191192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257305

RESUMO

Snakes can move through almost any terrain. Although their locomotion on flat surfaces using planar gaits is inherently stable, when snakes deform their body out of plane to traverse complex terrain, maintaining stability becomes a challenge. On trees and desert dunes, snakes grip branches or brace against depressed sand for stability. However, how they stably surmount obstacles like boulders too large and smooth to gain such 'anchor points' is less understood. Similarly, snake robots are challenged to stably traverse large, smooth obstacles for search and rescue and building inspection. Our recent study discovered that snakes combine body lateral undulation and cantilevering to stably traverse large steps. Here, we developed a snake robot with this gait and snake-like anisotropic friction and used it as a physical model to understand stability principles. The robot traversed steps as high as a third of its body length rapidly and stably. However, on higher steps, it was more likely to fail due to more frequent rolling and flipping over, which was absent in the snake with a compliant body. Adding body compliance reduced the robot's roll instability by statistically improving surface contact, without reducing speed. Besides advancing understanding of snake locomotion, our robot achieved high traversal speed surpassing most previous snake robots and approaching snakes, while maintaining high traversal probability.

6.
Integr Comp Biol ; 60(1): 171-179, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32215569

RESUMO

Snakes can move through almost any terrain. Similarly, snake robots hold the promise as a versatile platform to traverse complex environments such as earthquake rubble. Unlike snake locomotion on flat surfaces which is inherently stable, when snakes traverse complex terrain by deforming their body out of plane, it becomes challenging to maintain stability. Here, we review our recent progress in understanding how snakes and snake robots traverse large, smooth obstacles such as boulders and felled trees that lack "anchor points" for gripping or bracing. First, we discovered that the generalist variable kingsnake combines lateral oscillation and cantilevering. Regardless of step height and surface friction, the overall gait is preserved. Next, to quantify static stability of the snake, we developed a method to interpolate continuous body in three dimensions (3D) (both position and orientation) between discrete tracked markers. By analyzing the base of support using the interpolated continuous body 3-D kinematics, we discovered that the snake maintained perfect stability during traversal, even on the most challenging low friction, high step. Finally, we applied this gait to a snake robot and systematically tested its performance traversing large steps with variable heights to further understand stability principles. The robot rapidly and stably traversed steps nearly as high as a third of its body length. As step height increased, the robot rolled more frequently to the extent of flipping over, reducing traversal probability. The absence of such failure in the snake with a compliant body inspired us to add body compliance to the robot. With better surface contact, the compliant body robot suffered less roll instability and traversed high steps at higher probability, without sacrificing traversal speed. Our robot traversed large step-like obstacles more rapidly than most previous snake robots, approaching that of the animal. The combination of lateral oscillation and body compliance to form a large, reliable base of support may be useful for snakes and snake robots to traverse diverse 3-D environments with large, smooth obstacles.


Assuntos
Locomoção , Robótica , Serpentes/fisiologia , Animais , Fenômenos Biomecânicos
7.
BMC Vet Res ; 15(1): 107, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961660

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is a major emerging virus of porcine circovirus-associated disease (PCVAD), which has brought huge economic losses to the global pig industry. Pigs are well known as the natural reservoir of PCV2. Recently, many researchers have revealed PCV2 could infect many other mammals like mice, calves, minks, dogs and goats. In 2018, our laboratory has admitted six cases of raccoon dogs from Qinhuangdao city of China, which were characterized by inappetence, lethargy, depression, abortion, and sterility. RESULTS: At last, six raccoon dog-origin PCV2 strains were isolated in this study. Pairwise-sequence comparisons demonstrated that the six raccoon dog-origin PCV2 strains shared a nucleotide similarity of 92.1-99.8% among 40 PCV2 representative strains. Phylogenetic analysis indicated these PCV2 isolates belonged to Chinese epidemic genotypes PCV2b and PCV2d. And aborted or sterile symptom was significantly associated with PCV2 infection in raccoon dogs by the chi-square test (χ2 = 87.3, p < 0.001). The retrospective study revealed that raccoon dog-origin PCV2 strains shared 100% sequence similarity with the PCV2 stains isolated from pig farms around these raccoon dog farms, respectively. CONCLUSION: In this study, the first supported evidence of PCV2 prevalence in raccoon dog farms of China was documented. PCV2 may be one of the most significant causative agents resulting in the reproductive failure of farmed raccoon dogs, implying that PCV2 could transmit from pigs to raccoon dogs. That indicated that PCV2 cross-species transmission will be a serious threat to China's fur animal farming industry.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Doenças do Cão/virologia , Animais , Infecções por Circoviridae/virologia , Cães/virologia , Genoma Viral/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA
8.
Transbound Emerg Dis ; 66(1): 1-6, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30153367

RESUMO

Porcine circovirus type 2 (PCV2) is a causative agent of porcine circovirus-associated disease (PCVAD), which is a serious problem in the swine industry worldwide. In recent years, nonporcine-origin PCV2 has attracted more and more attention of the researchers. This study reported on the first identification of PCV2 in farmed foxes with reproductive failure. Three fox-origin PCV2 strains were successfully isolated, sequenced, and designated as FoxHB1, FoxHB2, and FoxHB3 respectively. Pairwise-sequence comparisons of the complete genomes revealed that three fox-origin PCV2 strains had nucleotide identities varied from 91.9% to 99.7% with representative strains of PCV2 different genotypes. Meanwhile, phylogenetic analysis based on complete genomes of 44 PCV2 strains indicated that the fox-origin PCV2 strains belonged to Chinese epidemic genotypes PCV2b and PCV2d. These results provided the first supported evidence that PCV2 could infect foxes, implying that the cross-species transmission of PCV2 would be a big threat to Chinese fur animal-bearing industry.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Circovirus/isolamento & purificação , Raposas/virologia , Animais , Infecções por Circoviridae/virologia , DNA Viral/genética , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Genoma Viral/genética , Genótipo , Filogenia , Reação em Cadeia da Polimerase/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...