Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(4): 1906-1920, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35088775

RESUMO

A lack of n-3 polyunsaturated fatty acids (PUFAs) in mothers' diet significantly reduced the amount of docosahexaenoic acid (DHA) in the brains of offspring, which might affect their brain function. Our previous research has proven multiple benefits of eicosapentaenoic acid (EPA)-enriched ethanolamine plasmalogen (pPE) in enhancing the learning and memory ability. However, the effect of dietary supplementation with EPA-pPE on the DHA content in the brain and liver of offspring lacking n-3 PUFAs in early life is still unclear. Female ICR mice were fed with n-3 PUFA-deficient diets throughout the gestation and lactation periods to get n-3 PUFA-deficient offspring. The lipid profiles in the cerebral cortex and liver of offspring were analyzed using lipidomics after dietary supplementation with EPA-pPE (0.05%, w/w) and EPA-phosphatidylcholine (PC) (0.05%, w/w) for 2 weeks after weaning. Dietary supplementation with EPA could significantly change fatty acid composition in a variety of phospholipid molecular species compared with the n-3 deficient group. EPA-pPE and EPA-PC remarkably increased the DHA content in the brain PC, ether-linked phosphatidylcholine (ePC), and phosphatidylethanolamine plasmalogen (pPE) and liver triglyceride (TG), lyso-phosphatidylcholine (LPC), ePC, phosphatidylethanolamine (PE), and pPE molecular species, in which EPA-pPE showed more significant effects on the increase of DHA in cerebral cortex PC, ePC and liver PC compared with EPA-PC. Both EPA-phospholipids could effectively increase the DHA levels, and the pPE form was superior to PC in the contribution of DHA content in the cerebral cortex PC, ePC and liver PC molecular species. EPA-enriched ethanolamine plasmalogen might be a good nutritional supplement to increase DHA levels in the brains of n-3 PUFA-deficient offspring.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/deficiência , Plasmalogênios/farmacologia , Animais , Encéfalo/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/administração & dosagem , Feminino , Lipidômica , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Plasmalogênios/administração & dosagem , Desmame
2.
Thyroid ; 26(5): 691-704, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26914762

RESUMO

BACKGROUND: The association of BRAF(V600E) with the clinical manifestations of papillary thyroid carcinoma (PTC) remains controversial. Recent studies have shown that the BRAF pseudogene can activate the MAPK pathway and induce tumorigenesis. This study investigated the association of BRAF(V600E), the BRAF pseudogene, and their mRNA levels with clinical features and thyroid-specific gene expression in conventional PTCs. MATERIALS AND METHODS: A total of 78 specimens were collected from patients with conventional PTCs. RNA was isolated, and quantitative polymerase chain reaction was used to measure the mRNA levels of BRAF, the BRAF pseudogene, and thyroid-specific and tumor-related genes. Immunohistochemical (IHC) staining of BRAF, ERK, sodium-iodide symporter (NIS), thyrotropin receptor, glucose transporter 1, and Ki67 was also performed. RESULTS: BRAF(V600E) and the BRAF pseudogene were detected in 73.0% (57/78) and 91.7% (44/48), respectively, of the conventional PTCs. The presence of BRAF(V600E) was not associated with the multiple clinical features assessed or the recurrence rate during 76.9 ± 47.2 months of follow-up. Neither was it associated with IHC staining or tumor-related/thyroid-specific gene expression, except for decreased NIS gene expression. The BRAF pseudogene was not associated with clinical characteristics or thyroid-specific gene expression, except for decreased decoy receptor 3 (DCR3) expression. High BRAF mRNA levels were associated with bilateral and multifocal lesions, and BRAF-pseudogene mRNA levels were positively correlated with BRAF mRNA levels (r = 0.415, p = 0.009). CONCLUSION: These results do not support the use of the BRAF(V600E) mutation as a prognostic marker of conventional PTC. However, the association of high BRAF mRNA levels with more advanced clinical features suggests that BRAF mRNA levels might be a more useful clinical marker of PTCs, independent of the BRAF(V600E) mutation status. The correlation between BRAF-pseudogene mRNA levels and BRAF mRNA levels in PTCs is in agreement with the hypothesis that the BRAF pseudogene regulates BRAF expression during tumorigenesis by acting as competitive noncoding RNA. However, additional studies with larger sample sizes are required to confirm these findings.


Assuntos
Carcinoma Papilar/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Adulto , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pseudogenes , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Membro 6b de Receptores do Fator de Necrose Tumoral/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...