Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropeptides ; 80: 102024, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32145934

RESUMO

Transection of the sural and common peroneal branches of the sciatic nerve produces cutaneous hypersensitivity at the tibial innervation territory of the mouse hindpaw that resolves within a few weeks. We report that interruption of endogenous neuropeptide Y (NPY) signaling during remission, with either conditional NPY knockdown in NPYtet/tet mice or intrathecal administration of the Y1 receptor antagonist BIBO3304, reinstated hypersensitivity. These data indicate that nerve injury establishes a long-lasting latent sensitization of spinal nociceptive neurons that is masked by spinal NPY-Y1 neurotransmission. To determine whether this mechanism extends beyond the sensory component of nociception, we used conditioned place aversion and preference assays to evaluate the affective component of pain. We found that BIBO3304 produced place aversion in mice when administered during remission. Furthermore, the analgesic drug gabapentin produced place preference after NPY knockdown in NPYtet/tet but not control mice. We then used pharmacological agents and deletion mutant mice to investigate the cellular mechanisms of neuropathic latent sensitization. BIBO3304-induced reinstatement of mechanical hypersensitivity and conditioned place aversion could be prevented with intrathecal administration of an N-methyl-d-aspartate receptor antagonist (MK-801) and was absent in adenylyl cyclase type 1 (AC1) deletion mutant mice. BIBO3304-induced reinstatement could also be prevented with intrathecal administration an AC1 inhibitor (NB001) or a TRPV1 channel blocker (AMG9801), but not vehicle. Intrathecal administration of a TRPA1 channel blocker (HC030031) prevented the reinstatement of neuropathic hypersensitivity produced either by BIBO3304, or by NPY knockdown in NPYtet/tet but not control mice. Our results confirm new mediators of latent sensitization: TRPA1 and TRPV1. We conclude that NPY acts at spinal Y1 to tonically inhibit a molecular NMDAR➔AC1 intracellular signaling pathway in the dorsal horn that is induced by peripheral nerve injury and drives both the sensory and affective components of chronic neuropathic pain.


Assuntos
Adenilil Ciclases/farmacologia , Hiperalgesia/tratamento farmacológico , Neuropeptídeo Y/farmacologia , Dor/tratamento farmacológico , Adenilil Ciclases/metabolismo , Analgésicos/farmacologia , Animais , Hiperalgesia/metabolismo , Masculino , Camundongos , Neuralgia/metabolismo , Neuropeptídeo Y/metabolismo , Nociceptividade/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Receptores de Neuropeptídeo Y/metabolismo
2.
Neuropharmacology ; 163: 107726, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31351975

RESUMO

Tissue injury produces a delicate balance between latent pain sensitization (LS) and compensatory endogenous opioid receptor analgesia that continues for months, even after re-establishment of normal pain thresholds. To evaluate the contribution of mu (MOR), delta (DOR), and/or kappa (KOR) opioid receptors to the silencing of chronic postoperative pain, we performed plantar incision at the hindpaw, waited 21 days for the resolution of hyperalgesia, and then intrathecally injected subtype-selective ligands. We found that the MOR-selective inhibitor CTOP (1-1000 ng) dose-dependently reinstated mechanical hyperalgesia. Two DOR-selective inhibitors naltrindole (1-10 µg) and TIPP[Ψ] (1-20 µg) reinstated mechanical hyperalgesia, but only at the highest dose that also produced itching, licking, and tail biting. Both the prototypical KOR-selective inhibitors nor-BNI (0.1-10 µg) and the newer KOR inhibitor with more canonical pharmocodynamic effects, LY2456302 (0.1-10 µg), reinstated mechanical hyperalgesia. Furthermore, LY2456302 (10 µg) increased the expression of phosphorylated signal-regulated kinase (pERK), a marker of central sensitization, in dorsal horn neurons but not glia. Sex studies revealed that LY2456302 (0.3 µg) reinstated hyperalgesia and pERK expression to a greater degree in female as compared to male mice. Our results suggest that spinal MOR and KOR, but not DOR, maintain LS within a state of remission to reduce the intensity and duration of postoperative pain, and that endogenous KOR but not MOR analgesia is greater in female mice.


Assuntos
Dor Pós-Operatória/metabolismo , Receptores Opioides kappa/antagonistas & inibidores , Fatores Sexuais , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Animais , Benzamidas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Pirrolidinas/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Corno Dorsal da Medula Espinal/metabolismo
3.
Neuropharmacology ; 158: 107732, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377198

RESUMO

Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 µM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neuropeptídeo Y/metabolismo , Nociceptividade/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Células do Corno Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Canais de Cátion TRPV/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Capsaicina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hiperalgesia/metabolismo , Indóis/farmacologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Lidocaína/farmacologia , Masculino , Microscopia Confocal , Neuropeptídeo Y/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Células do Corno Posterior/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Ratos , Receptores de Neuropeptídeo Y/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , ômega-Conotoxinas/farmacologia
4.
Pain ; 160(8): 1754-1765, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31335645

RESUMO

Peripheral inflammation produces a long-lasting latent sensitization of spinal nociceptive neurons, that is, masked by tonic inhibitory controls. We explored mechanisms of latent sensitization with an established four-step approach: (1) induction of inflammation; (2) allow pain hypersensitivity to resolve; (3) interrogate latent sensitization with a channel blocker, mutant mouse, or receptor antagonist; and (4) disrupt compensatory inhibition with a receptor antagonist so as to reinstate pain hypersensitivity. We found that the neuropeptide Y Y1 receptor antagonist BIBO3304 reinstated pain hypersensitivity, indicative of an unmasking of latent sensitization. BIBO3304-evoked reinstatement was not observed in AC1 knockout mice and was prevented with intrathecal co-administration of a pharmacological blocker to the N-methyl-D-aspartate receptor (NMDAR), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), transient receptor potential cation channel A1 (TRPA1), channel V1 (TRPV1), or exchange protein activated by cAMP (Epac1 or Epac2). A PKA activator evoked both pain reinstatement and touch-evoked pERK expression in dorsal horn; the former was prevented with intrathecal co-administration of a TRPA1 or TRPV1 blocker. An Epac activator also evoked pain reinstatement and pERK expression. We conclude that PKA and Epac are sufficient to maintain long-lasting latent sensitization of dorsal horn neurons that is kept in remission by the NPY-Y1 receptor system. Furthermore, we have identified and characterized 2 novel molecular signaling pathways in the dorsal horn that drive latent sensitization in the setting of chronic inflammatory pain: NMDAR→AC1→PKA→TRPA1/V1 and NMDAR→AC1→Epac1/2. New treatments for chronic inflammatory pain might either increase endogenous NPY analgesia or inhibit AC1, PKA, or Epac.


Assuntos
Arginina/análogos & derivados , Dor Crônica/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Animais , Arginina/farmacologia , Masculino , Camundongos , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
5.
Sci Rep ; 9(1): 7248, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076578

RESUMO

Endogenous neuropeptide Y (NPY) exerts long-lasting spinal inhibitory control of neuropathic pain, but its mechanism of action is complicated by the expression of its receptors at multiple sites in the dorsal horn: NPY Y1 receptors (Y1Rs) on post-synaptic neurons and both Y1Rs and Y2Rs at the central terminals of primary afferents. We found that Y1R-expressing spinal neurons contain multiple markers of excitatory but not inhibitory interneurons in the rat superficial dorsal horn. To test the relevance of this spinal population to the development and/or maintenance of acute and neuropathic pain, we selectively ablated Y1R-expressing interneurons with intrathecal administration of an NPY-conjugated saporin ribosomal neurotoxin that spares the central terminals of primary afferents. NPY-saporin decreased spinal Y1R immunoreactivity but did not change the primary afferent terminal markers isolectin B4 or calcitonin-gene-related peptide immunoreactivity. In the spared nerve injury (SNI) model of neuropathic pain, NPY-saporin decreased mechanical and cold hypersensitivity, but disrupted neither normal mechanical or thermal thresholds, motor coordination, nor locomotor activity. We conclude that Y1R-expressing excitatory dorsal horn interneurons facilitate neuropathic pain hypersensitivity. Furthermore, this neuronal population remains sensitive to intrathecal NPY after nerve injury. This neuroanatomical and behavioral characterization of Y1R-expressing excitatory interneurons provides compelling evidence for the development of spinally-directed Y1R agonists to reduce chronic neuropathic pain.


Assuntos
Interneurônios/metabolismo , Neuralgia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Axônios/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Injeções Espinhais/métodos , Masculino , Neurônios/metabolismo , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
6.
Neurobiol Dis ; 127: 76-86, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30807826

RESUMO

Painful diabetic neuropathy (PDN) is a devastating neurological complication of diabetes. Methylglyoxal (MG) is a reactive metabolite whose elevation in the plasma corresponds to PDN in patients and pain-like behavior in rodent models of type 1 and type 2 diabetes. Here, we addressed the MG-related spinal mechanisms of PDN in type 2 diabetes using db/db mice, an established model of type 2 diabetes, and intrathecal injection of MG in conventional C57BL/6J mice. Administration of either a MG scavenger (GERP10) or a vector overexpressing glyoxalase 1, the catabolic enzyme for MG, attenuated heat hypersensitivity in db/db mice. In C57BL/6J mice, intrathecal administration of MG produced signs of both evoked (heat and mechanical hypersensitivity) and affective (conditioned place avoidance) pain. MG-induced Ca2+ mobilization in lamina II dorsal horn neurons of C57BL/6J mice was exacerbated in db/db, suggestive of MG-evoked central sensitization. Pharmacological and/or genetic inhibition of transient receptor potential ankyrin subtype 1 (TRPA1), adenylyl cyclase type 1 (AC1), protein kinase A (PKA), or exchange protein directly activated by cyclic adenosine monophosphate (Epac) blocked MG-evoked hypersensitivity in C57BL/6J mice. Similarly, intrathecal administration of GERP10, or inhibitors of TRPA1 (HC030031), AC1 (NB001), or Epac (HJC-0197) attenuated hypersensitivity in db/db mice. We conclude that MG and sensitization of a spinal TRPA1-AC1-Epac signaling cascade facilitate PDN in db/db mice. Our results warrant clinical investigation of MG scavengers, glyoxalase inducers, and spinally-directed pharmacological inhibitors of a MG-TRPA1-AC1-Epac pathway for the treatment of PDN in type 2 diabetes.


Assuntos
Adenilil Ciclases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Aldeído Pirúvico/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/complicações , Masculino , Camundongos , Medição da Dor , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Aldeído Pirúvico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Front Neurosci ; 11: 679, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270106

RESUMO

Methylglyoxal (MG) is a metabolite of glucose that may contribute to peripheral neuropathy and pain in diabetic patients. MG increases intracellular calcium in sensory neurons and produces behavioral nociception via the cation channel transient receptor potential ankyrin 1 (TRPA1). However, rigorous characterization of an animal model of methylglyoxal-evoked pain is needed, including testing whether methylglyoxal promotes negative pain affect. Furthermore, it remains unknown whether methylglyoxal is sufficient to activate neurons in the spinal cord dorsal horn, whether this requires TRPA1, and if the calcium-sensitive adenylyl cyclase 1 isoform (AC1) contributes to MG-evoked pain. We administered intraplantar methylglyoxal and then evaluated immunohistochemical phosphorylation of extracellular signal-regulated kinase (p-ERK) and multiple pain-like behaviors in wild-type rats and mice and after disruption of either TRPA1 or AC1. Methylglyoxal produced conditioned place avoidance (CPA) (a measure of affective pain), dose-dependent licking and lifting nociceptive behaviors, hyperalgesia to heat and mechanical stimulation, and p-ERK in the spinal cord dorsal horn. TRPA1 knockout or intrathecal administration of a TRPA1 antagonist (HC030031) attenuated methylglyoxal-evoked p-ERK, nociception, and hyperalgesia. AC1 knockout abolished hyperalgesia but not nociceptive behaviors. These results indicate that intraplantar administration of methylglyoxal recapitulates multiple signs of painful diabetic neuropathy found in animal models of or patients with diabetes, including the activation of spinal nociresponsive neurons and the potential involvement of a TRPA1-AC1 sensitization mechanism. We conclude that administration of MG is a valuable model for investigating both peripheral and central components of a MG-TRPA1-AC1 pathway that contribute to painful diabetic neuropathy.

8.
Neurosci Lett ; 595: 1-6, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25849525

RESUMO

Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100µg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3µg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Encefalomielite Autoimune Experimental/fisiopatologia , Hiperalgesia/fisiopatologia , Esclerose Múltipla/fisiopatologia , Receptor CB2 de Canabinoide/agonistas , Animais , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Hiperalgesia/tratamento farmacológico , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Receptor CB2 de Canabinoide/antagonistas & inibidores
9.
Int J Clin Exp Med ; 3(4): 303-7, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21072264

RESUMO

Obesity is a metabolic disease characterized by chronic inflammation. Early studies indicated that adipose tissue from obese mice contains more saturated fatty acids and that the saturated fatty acids activate TLR4-mediated inflammatory signaling, which contributes to inflammation in adipose tissue. In this study, we determined fatty acid profile in non-adipose tissues from obese (db/db) mice and compared with that from lean mice. Unexpectedly, in contrast to a significant increase in saturated and decrease in unsaturated fatty acid in adipose tissue from obese mice, the non-adipose tissues from obese mice exhibited a significant decrease in saturated and increase in unsaturated fatty acid compared with that from lean mice. The liver from obese mice had a 15% and 32% decrease in palmitic acid and stearic acid, and a 20% increase in linoleic acid; the spleen had a 32% and 60% decrease in palmitic acid and stearic acid, and a 70% and 50% increase in oleic acid and linoleic acid; and the pancreas had a 50% and 75% decrease in palmitic acid and stearic acid, and a 130% and 113% increase in oleic acid and linoleic acid. These data suggest that, different from adipose tissue where elevated saturated fatty acids contributes to inflammation, fatty acids per se in non-adipose tissues such as liver, spleen and pancreas may not contribute to inflammatory responses in obese mice.

10.
J Biol Chem ; 285(33): 25154-60, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20534584

RESUMO

Sepsis is a leading cause of death, which is characterized by uncontrolled inflammatory response. In this study, we report that caveolin-1, a major component of caveolae, is a critical survival factor of sepsis. We induced sepsis using a well established sepsis animal model, cecal ligation and puncture (CLP). CLP induced 67% fatality in caveolin-1 null mice, but only 27% fatality in wild type littermates (p = 0.015). Further studies revealed that mice deficient in caveolin-1 exhibited marked increase in tumor necrosis factor-alpha and interleukin-6 production 20 h following CLP treatment, indicating uncontrolled inflammatory responses in the absence of caveolin-1. Caveolin-1 null mice also had a significant increase in bacteria number recovered from liver and spleen, indicating elevated bacterial burdens. In addition, caveolin-1 null mice had a 2-fold increase in thymocyte apoptosis compared with wild type littermates, indicating caveolin-1 as a critical modulator of thymocyte apoptosis during sepsis. In conclusion, our findings demonstrate that caveolin-1 is a critical protective modulator of sepsis in mice. Caveolin-1 exerts its protective function likely through its roles in modulating inflammatory response, alleviating bacterial burdens, and suppressing thymocyte apoptosis.


Assuntos
Apoptose/imunologia , Caveolina 1/metabolismo , Sepse/imunologia , Sepse/microbiologia , Timo/citologia , Timo/imunologia , Animais , Apoptose/genética , Caveolina 1/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Perfuração Intestinal/complicações , Ligadura , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Peroxidase/metabolismo , Punções , Sepse/etiologia
11.
J Neurochem ; 111(4): 1062-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19765191

RESUMO

The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper-zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin-association domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N-terminal Phox and Bem1 (PB1) domain (residues 1-104) and a separate internal region (residues 178-224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187, and K189 residues are critical to the p62-mutant SOD1 interaction as substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin-independent fashion and targeted for the autophagy-lysosome degradation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Superóxido Dismutase/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Proteínas de Choque Térmico/genética , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Neurônios Motores/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Proteína Sequestossoma-1 , Medula Espinal/citologia , Superóxido Dismutase/química , Superóxido Dismutase/genética , Transfecção , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...