Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 172: 290-298, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931548

RESUMO

Jarosite [MeFe3(SO4)2(OH)6] is a typical non-ferrous smelting slag produced in the process of iron removal from hydrometallurgical solution, which contains a large number of valuable and toxic metal elements. Treating the complex and hazardous jarosite residue in an economically and environmentally sound way has always been an urgent problem. A novel one-step hydrothermal treatment method was proposed in this paper for recycling of jarosite residues. It can be seen from the XRD and TEM results that jarosite residues could be completely transformed into hematite crystal particles under hydrothermal conditions at temperature above 220℃. Meanwhile, other valuable metal components (such as nickel sulfate hexahydrate) entrained in the residue will be dissolved in the aqueous solution, which can be reused in the hydrometallurgical process. Through phase composition analysis of the hydrothermal process, it is concluded that jarosite was firstly pyrolyzed to generate Fe3+. The obtained Fe3+ was then hydrolyzed to Fe (OH)3, which was transformed into Fe2O3 through dehydration condensation and directional arrangement. Further roasting the hematite particles, the obtained product contained 62.57 % of Fe, but only 0.21 % of S and 0.04 % of As, which meets the requirements of raw materials for iron making. In addition, compared with the current international standard ISO 1248:2006 (E), the obtained hematite particles with nanometer size and single crystal structure can be used as iron oxide red pigment. Overall, the one-step hydrothermal treatment of jarosite residues followed by reduction roasting not only realizes the economic recycling of the metal resources, but also solves the stacking problem of those hazardous residues.


Assuntos
Compostos Férricos , Sulfatos , Compostos Férricos/química , Sulfatos/química , Ferro/química , Metais
2.
J Hazard Mater ; 416: 125972, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492881

RESUMO

In hydrometallurgy industry, the accumulation of iron removal residues containing heavy metal elements and toxic elements poses great threats to ecological systems. We propose a novel method to prevent the production of hazardous iron removal residues: firstly, neutralization precipitation is used to purify iron ions in solution; after sedimentation of the obtained suspension, only dense underflow is subjected to hydrothermal reaction, in which ferric hydroxide transforms into hematite crystal. Results showed that ferric hydroxide precipitated into a thin sedimentation layer at temperature greater than 60 °C. For hydrothermal treatment of the sedimentation layer, a high hydrothermal reaction temperature was conducive to complete transformation of ferric hydroxide into hematite. The precipitated ferric hydroxide firstly changed from the crystallite of goethite or lepidocrocite to amorphous particles, and then gradually formed spherical α-Fe2O3 monocrystalline with diameter of around 50 nm, as indicated by TEM and XRD results. At 200 °C, hematite precipitates with iron content of about 65% can be obtained. For iron-containing zinc/nickel/cobalt sulfate solution, controlling hydrothermal reaction temperature and acidity of the underflow solution can effectively avoid the generation of zinc/nickel/cobalt hydroxides or subsulfates in the hematite precipitates, thereby significantly reducing the loss of those valuable metals.


Assuntos
Ferro , Metais Pesados , Compostos Férricos , Reciclagem , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA