Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 21(6): 637-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21715971

RESUMO

Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Glucosidases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Recombinantes/metabolismo , Regulação para Cima , Proteínas de Bactérias/genética , Biotecnologia/métodos , Cellulomonas/enzimologia , Cellulomonas/genética , Meios de Cultura , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Engenharia Genética/métodos , Glucosidases/genética , Proteínas de Choque Térmico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
2.
Protein Expr Purif ; 48(2): 205-14, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16542852

RESUMO

Hyper-expression of a secretory exoglucanase, Exg, encoded by the cex gene of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of recombinant Escherichia coli (Z.B. Fu, K.L. Ng, T.L. Lam, W.K.R. Wong, Cell death caused by hyper-expression of a secretory exoglucanase in Esherichia coli, Protein Expr. Purif. 42 (2005) 67-77). We propose here that the cell lysate ratio (Pre/Mat RQ) of the unprocessed precursor Exg protein (Pre-Exg) and its processed mature product (Mat-Exg) reflects the capacity of E. coli to secrete Exg. A Pre/Mat RQ of 20/80, designated the "Critical Value," was an important threshold measurement. A rise in the Pre/Mat RQ triggered a mass killing effect. The use of various secretion signal peptides did not improve the viability of cells expressing high levels of Pre-Exg under strong tac promoter control. However, use of the weaker vegG promoter in conjunction with a change in start codon of the spa leader sequence from ATG to TTG in a pM1vegGcexL plasmid construct resulted in a high level (0.9 U ml(-1)) of excreted Exg in shake-flask cultures. This was 50% higher than the best result obtained from plasmid construct lacUV5par8cex, using the lacUV5 promoter and the ompA leader sequence. Variations in the excreted Exg activities were attributable to differences in the Pre/Mat RQ values of the induced cultures harboring pM1vegGcexL and lacUV5par8cex. These values were 18/82 and 10/90, respectively. Employing fed-batch cultivation in two-liter fermentors, an induced JM101(pM1vegGcexL) culture yielded 4.5 U ml(-1) of excreted Exg, which was over six fold greater that previously reported. Our results illustrate the successful application of the Pre/Mat RQ ratio as a guide to the attainment of a maximum level of secreted/excreted Exg.


Assuntos
Escherichia coli/genética , Expressão Gênica , Glucosidases/biossíntese , Glucosidases/genética , Morte Celular , Fermentação , Glucosidases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
3.
Protein Expr Purif ; 42(1): 67-77, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15882948

RESUMO

Induced expression of a gene fusion between the ompA leader sequence and the Cellulomonas fimi cex gene encoding a secretory exoglucanase, Exg, engineered in the Tac-cassette excretion vector was lethal to Escherichia coli. An exponentially growing culture harboring the recombinant construct suffered slow growth and 99.9% of its cells died within 60-100 min after induction. This abnormality was found to have a close correlation with the rapid increase in the relative amount of the OmpA/Exg fusion precursor (Pre-Exg) compared to its processed product (Mat-Exg). Analysis of subcellular fractions revealed the presence of Pre-Exg in the inner membrane of cultures expressing high levels but not low levels of Pre-Exg. As only Pre-Exg but not Mat-Exg was detectable in the cytoplasm, and Exg was shown by cross-linking experiments to be physically associated with the Sec proteins, it was concluded that secretion and processing of Pre-Exg took place in the SecYEG translocation machinery. The results were in line with the previous speculation that accumulation of unprocessed precursor proteins in the cytoplasmic membrane was detrimental, and supported the idea that cell death was caused by some unusual tie-up of Pre-Exg with the SecYEG translocation machinery, thus imposing an inhibitory effect on the secretion of endogenous secretory proteins. A new model, designated "Saturated Translocation," was proposed to explain the interchangeable lethal and non-lethal properties of Pre-Exg, and to address the possible scenarios that might occur in the course of cell death triggered by secretion of Pre-Exg.


Assuntos
Cellulomonas/enzimologia , Escherichia coli/genética , Expressão Gênica/genética , Glicosídeo Hidrolases/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular/genética , Membrana Celular/metabolismo , Cellulomonas/genética , Citoplasma/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA