Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2505, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130834

RESUMO

Recombinant proteins in complex solutions are typically detected with tag-specific antibodies in Western blots. Here we describe an antibody-free alternative in which tagged proteins are detected directly in polyacrylamide gels. For this, the highly specific protein ligase Connectase is used to selectively fuse fluorophores to target proteins carrying a recognition sequence, the CnTag. Compared to Western blots, this procedure is faster, more sensitive, offers a better signal-to-noise ratio, requires no optimization for different samples, allows more reproducible and accurate quantifications, and uses freely available reagents. With these advantages, this method represents a promising alternative to the state of the art and may facilitate studies on recombinant proteins.


Assuntos
Eletroforese , Ligases , Proteínas , Fluorescência , Proteínas/isolamento & purificação , Western Blotting , Eletroforese/métodos , Sensibilidade e Especificidade
2.
Bioinformatics ; 37(24): 4694-4703, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323935

RESUMO

MOTIVATION: The proteasome is the main proteolytic machine for targeted protein degradation in archaea and eukaryotes. While some bacteria also possess the proteasome, most of them contain a simpler and more specialized homolog, the heat shock locus V protease. In recent years, three further homologs of the proteasome core subunits have been characterized in prokaryotes: Anbu, BPH and connectase. With the inclusion of these members, the family of proteasome-like proteins now exhibits a range of architectural and functional forms, from the canonical proteasome, a barrel-shaped protease without pronounced intrinsic substrate specificity, to the monomeric connectase, a highly specific protein ligase. RESULTS: We employed systematic sequence searches to show that we have only seen the tip of the iceberg so far and that beyond the hitherto known proteasome homologs lies a wealth of distantly related, uncharacterized homologs. We describe a total of 22 novel proteasome homologs in bacteria and archaea. Using sequence and structure analysis, we analyze their evolutionary history and assess structural differences that may modulate their function. With this initial description, we aim to stimulate the experimental investigation of these novel proteasome-like family members. AVAILABILITY AND IMPLEMENTATION: The protein sequences in this study are searchable in the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) with ProtBLAST/PSI-BLAST and with HHpred (database 'proteasome_homologs'). The following data are available at https://data.mendeley.com/datasets/t48yhff7hs/3: (i) sequence alignments for each proteasome-like homolog, (ii) the coordinates for their structural models and (iii) a cluster-map file, which can be navigated interactively in CLANS and gives direct access to all the sequences in this study. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Complexo de Endopeptidases do Proteassoma/química , Proteínas/química , Sequência de Aminoácidos , Bactérias/metabolismo , Evolução Biológica , Archaea/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688044

RESUMO

Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.


Assuntos
Proteínas Arqueais/metabolismo , Ligases/metabolismo , Methanocaldococcus/enzimologia , Methanosarcina/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Cristalografia por Raios X , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Especificidade por Substrato
4.
Bioessays ; 41(5): e1800237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30970167

RESUMO

The proteasome family of proteases comprises oligomeric assemblies of very different symmetry. In different sizes, it features ring-like oligomers with dihedral symmetry that allow the stacking of further rings of regulatory subunits as observed in the modular proteasome system, but also less symmetric helical assemblies. Comprehensive sequence and structural analyses of proteasome homologs reveal a parsimonious scenario of how symmetry may have emerged from a monomeric ancestral precursor and how it may have evolved throughout the proteasome family. The four characterized representatives-ancestral ß subunit (Anbu), HslV, betaproteobacterial proteasome homolog (BPH), and the 20S proteasome-are outlasting cornerstones in the family's evolutionary history, each marking a transition in symmetry. This article contextualizes the evolutionary and functional key aspects of these symmetry transitions, explaining how they facilitated the diversification and concurrent evolution of independent proteolytic systems side by side, each with its customized network of auxiliary interactors.


Assuntos
Evolução Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Multimerização Proteica
5.
Nat Commun ; 9(1): 2696, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002364

RESUMO

While protein ubiquitination was long believed to be a truly eukaryotic feature, recently sequenced genomes revealed complete ubiquitin (Ub) modification operons in archaea. Here, we present the structural and mechanistic characterization of an archaeal Rpn11 deubiquitinase from Caldiarchaeum subterraneum, CsRpn11, and its role in the processing of CsUb precursor and ubiquitinated proteins. CsRpn11 activity is affected by the catalytic metal ion type, small molecule inhibitors, sequence characteristics at the cleavage site, and the folding state of CsUb-conjugated proteins. Comparison of CsRpn11 and CsRpn11-CsUb crystal structures reveals a crucial conformational switch in the CsRpn11 Ins-1 site, which positions CsUb for catalysis. The presence of this transition in a primordial soluble Rpn11 thus predates the evolution of eukaryotic Rpn11 immobilized in the proteasomal lid. Complementing phylogenetic studies, which designate CsRpn11 and CsUb as close homologs of the respective eukaryotic proteins, our results provide experimental support for an archaeal origin of protein ubiquitination.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sequência de Bases , Biocatálise , Cristalografia por Raios X , Evolução Molecular , Metais/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ubiquitina/genética
6.
J Biol Chem ; 293(3): 920-930, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29183996

RESUMO

Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases.


Assuntos
Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Betaproteobacteria/metabolismo , Cupriavidus/metabolismo , Oligopeptídeos/farmacologia , Óperon/genética , Filogenia , Inibidores de Proteassoma/farmacologia , Conformação Proteica/efeitos dos fármacos , Thiobacillus/metabolismo
7.
Structure ; 25(6): 834-845.e5, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479063

RESUMO

Proteasomes are self-compartmentalizing proteases that function at the core of the cellular protein degradation machinery in eukaryotes, archaea, and some bacteria. Although their evolutionary history is under debate, it is thought to be linked to that of the bacterial protease HslV and the hypothetical bacterial protease Anbu (ancestral beta subunit). Here, together with an extensive bioinformatic analysis, we present the first biophysical characterization of Anbu. Anbu forms a dodecameric complex with a unique architecture that was only accessible through the combination of X-ray crystallography and small-angle X-ray scattering. While forming continuous helices in crystals and electron microscopy preparations, refinement of sections from the crystal structure against the scattering data revealed a helical open-ring structure in solution, contrasting the ring-shaped structures of proteasome and HslV. Based on this primordial architecture and exhaustive sequence comparisons, we propose that Anbu represents an ancestral precursor at the origin of self-compartmentalization.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...