Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319148

RESUMO

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Código das Histonas , Cromatina , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismo
2.
Trends Biochem Sci ; 46(7): 564-578, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33551235

RESUMO

The core histone tails are critical in chromatin structure and signaling. Studies over the past several decades have provided a wealth of information on the histone tails and their interaction with chromatin factors. However, the conformation of the histone tails in a chromatin relevant context has remained elusive. Only recently has enough evidence emerged to start to build a structural model of the tails in the context of nucleosomes and nucleosome arrays. Here, we review these studies and propose that the histone tails adopt a high-affinity fuzzy complex with DNA, characterized by robust but dynamic association. Furthermore, we discuss how these DNA-bound conformational ensembles promote distinct chromatin structure and signaling, and that their fuzzy nature is important in transitioning between functional states.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA , Histonas/metabolismo , Conformação de Ácido Nucleico
3.
mBio ; 10(1)2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755505

RESUMO

The large genome of human cytomegalovirus (HCMV) is transcribed by RNA polymerase II (Pol II). However, it is not known how closely this betaherpesvirus follows host transcriptional paradigms. We applied PRO-Seq and PRO-Cap methods to profile and quantify transcription initiation and productive elongation across the host and virus genomes in late infection. A major similarity between host transcription and viral transcription is that treatment of cells with the P-TEFb inhibitor flavopiridol preempts virtually all productive elongation, which otherwise covers most of the HCMV genome. The deep, nucleotide resolution identification of transcription start sites (TSSs) enabled an extensive analysis of core promoter elements. An important difference between host and viral transcription is that initiation is much more pervasive on the HCMV genome. The sequence preferences in the initiator region around the TSS and the utilization of upstream T/A-rich elements are different. Upstream TATA positions the TSS and boosts initiation in both the host and the virus, but upstream TATT has a significant stimulatory impact only on the viral template. The major immediate early (MIE) promoter remained active during late infection and was accompanied by transcription of both strands of the MIE enhancer from promoters within the enhancer. Surprisingly, we found that the long noncoding RNA4.9 is intimately associated with the viral origin of replication (oriLyt) and was transcribed to a higher level than any other viral or host promoter. Finally, our results significantly contribute to the idea that late in infection, transcription takes place on viral genomes that are not highly chromatinized.IMPORTANCE Human cytomegalovirus infects more than half of humans, persists silently in virtually all tissues, and produces life-threatening disease in immunocompromised individuals. HCMV is also the most common infectious cause of birth defects and the leading nongenetic cause of sensorineural hearing loss in the United States. Because there is no vaccine and current drugs have problems with potency, toxicity, and antiviral drug resistance, alternative treatment strategies that target different points of viral control are needed. Our current study contributes to this goal by applying newly developed methods to examine transcription of the HCMV and host genomes at nucleotide resolution in an attempt to find targetable differences between the two. After a thorough analysis of productive elongation and of core promoter element usage, we found that some mechanisms of regulating transcription are shared between the host and HCMV but that others are distinctly different. This suggests that HCMV transcription may be a legitimate target for future antiviral therapies and this might translate to other herpesviruses.


Assuntos
Citomegalovirus/genética , Genoma Humano , Genoma Viral , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Células Cultivadas , Inibidores Enzimáticos/metabolismo , Flavonoides/metabolismo , Humanos , Piperidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...