Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 29: 17-31, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36941920

RESUMO

Efferent brain-stem neurons release acetylcholine to desensitize cochlear hair cells and can protect the inner ear from acoustic trauma. That protection is absent from knockout mice lacking efferent inhibition and is stronger in mice with a gain-of-function point mutation of the hair cell-specific nicotinic acetylcholine receptor. The present work uses viral transduction of gain-of-function receptors to restore acoustic prophylaxis to the knockout mice. Widespread postsynaptic expression of the transgene was visualized in excised tissue with a fluorophore-conjugated peptide toxin that binds selectively to hair cell acetylcholine receptors. Viral transduction into efferent knockout mice reduced the temporary hearing loss measured 1 day post acoustic trauma. The acoustic evoked-response waveform (auditory brain-stem response) recovered more rapidly in treated mice than in control mice. Thus, both cochlear amplification by outer hair cells (threshold shift) and afferent signaling (evoked-response amplitude) in knockout mice were protected by viral transduction of hair cell acetylcholine receptors. Gene therapy to strengthen efferent cochlear feedback could be complementary to existing and future therapies to prevent hearing loss, including ear coverings, hearing aids, single-gene repair, or small-molecule therapies.

2.
Proc Natl Acad Sci U S A ; 117(21): 11811-11819, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393641

RESUMO

"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.


Assuntos
Envelhecimento/fisiologia , Cóclea , Células Ciliadas Auditivas Externas , Presbiacusia , Complexo Olivar Superior , Animais , Cóclea/fisiologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Retroalimentação Fisiológica/fisiologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Emissões Otoacústicas Espontâneas/fisiologia , Presbiacusia/fisiopatologia , Presbiacusia/prevenção & controle , Complexo Olivar Superior/citologia , Complexo Olivar Superior/fisiologia
4.
Child Adolesc Psychiatr Clin N Am ; 28(1): 121-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389072

RESUMO

This case provides support for electroconvulsive therapy as a safe treatment in adolescents with a feeding tube. The patient presented to our hospital with symptoms of catatonia with minimal oral intake. She had stopped eating, had minimal interaction with her environment, and spent weeks with a nasogastric tube for nutritional support. She had been referred for electroconvulsive therapy but was unable to find a local provider who would perform it on an adolescent with a nasogastric tube. She came to our hospital and received 9 rounds of electroconvulsive therapy with improvement of her catatonia and no aspiration or adverse events.


Assuntos
Catatonia/terapia , Eletroconvulsoterapia , Intubação Gastrointestinal , Adolescente , Feminino , Linfadenite Histiocítica Necrosante , Humanos , Resultado do Tratamento
6.
J Neurosci ; 38(16): 3939-3954, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29572431

RESUMO

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOC activity and short-term facilitation at the MOC-OHC synapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α9α10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+ signals. Interestingly, MOC-OHC synapses of L9'T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.SIGNIFICANCE STATEMENT Plasticity can involve reciprocal signaling across chemical synapses. An opportunity to study this phenomenon occurs in the mammalian cochlea whose sensitivity is regulated by efferent olivocochlear neurons. These release acetylcholine to inhibit sensory hair cells. A point mutation in the hair cell's acetylcholine receptor that leads to increased gating of the receptor greatly elongates IPSCs. Interestingly, efferent terminals from mutant mice present a reduced resting release probability. However, upon high-frequency stimulation transmitter release facilitates strongly to produce stronger and far longer-lasting inhibition of cochlear function. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define plasticity mechanisms in cholinergic synapses other than the highly studied neuromuscular junction.


Assuntos
Mutação com Ganho de Função , Células Ciliadas Auditivas/metabolismo , Plasticidade Neuronal , Receptores Nicotínicos/genética , Animais , Sinalização do Cálcio , Retroalimentação Fisiológica , Feminino , Células Ciliadas Auditivas/fisiologia , Potenciais Pós-Sinápticos Inibidores , Ativação do Canal Iônico , Masculino , Camundongos , Neurônios Eferentes/metabolismo , Neurônios Eferentes/fisiologia , Receptores Nicotínicos/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(9): E2095-E2104, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29439202

RESUMO

During a critical developmental period, cochlear inner hair cells (IHCs) exhibit sensory-independent activity, featuring action potentials in which Ca2+ ions play a fundamental role in driving both spiking and glutamate release onto synapses with afferent auditory neurons. This spontaneous activity is controlled by a cholinergic input to the IHC, activating a specialized nicotinic receptor with high Ca2+ permeability, and coupled to the activation of hyperpolarizing SK channels. The mechanisms underlying distinct excitatory and inhibitory Ca2+ roles within a small, compact IHC are unknown. Making use of Ca2+ imaging, afferent auditory bouton recordings, and electron microscopy, the present work shows that unusually high intracellular Ca2+ buffering and "subsynaptic" cisterns provide efficient compartmentalization and tight control of cholinergic Ca2+ signals. Thus, synaptic efferent Ca2+ spillover and cross-talk are prevented, and the cholinergic input preserves its inhibitory signature to ensure normal development of the auditory system.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cóclea/fisiologia , Células Ciliadas Auditivas Internas/citologia , Sinapses/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação , Animais , Vias Auditivas/fisiologia , Estimulação Elétrica , Feminino , Ácido Glutâmico/metabolismo , Audição , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/fisiologia , Transdução de Sinais
8.
Mol Biol Evol ; 31(12): 3250-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193338

RESUMO

Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.


Assuntos
Cálcio/metabolismo , Receptores Nicotínicos/genética , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Galinhas , Evolução Molecular , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Agonistas Nicotínicos/farmacologia , Permeabilidade , Ratos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Xenopus laevis
9.
J Neurosci ; 33(39): 15477-87, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24068816

RESUMO

The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca(2+)-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca(2+)-activated small-conductance type 2 (SK2)K(+) channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABA(B(1a,2)) receptors [GABA(B(1a,2))Rs] that downregulate the amount of ACh released at the OC-hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABA(B)Rs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABA(B1)-GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABA(B1a) isoform selectively inhibits release at efferent cholinergic synapses.


Assuntos
Células Ciliadas Auditivas/fisiologia , Potenciais Pós-Sinápticos Inibidores , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Acetilcolina/metabolismo , Animais , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Estimulação Elétrica , Células Ciliadas Auditivas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Eferentes/fisiologia , Receptores de GABA-B/genética , Sinapses/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
J Trauma Acute Care Surg ; 75(1 Suppl 1): S75-81, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23778515

RESUMO

BACKGROUND: The Focused Assessment with Sonography for Trauma (FAST) examination is an important variable in many retrospective trauma studies. The purpose of this study was to devise an imputation method to overcome missing data for the FAST examination. Owing to variability in patients' injuries and trauma care, these data are unlikely to be missing completely at random, raising concern for validity when analyses exclude patients with missing values. METHODS: Imputation was conducted under a less restrictive, more plausible missing-at-random assumption. Patients with missing FAST examinations had available data on alternate, clinically relevant elements that were strongly associated with FAST results in complete cases, especially when considered jointly. Subjects with missing data (32.7%) were divided into eight mutually exclusive groups based on selected variables that both described the injury and were associated with missing FAST values. Additional variables were selected within each group to classify missing FAST values as positive or negative, and correct FAST examination classification based on these variables was determined for patients with nonmissing FAST values. RESULTS: Severe head/neck injury (odds ratio [OR], 2.04), severe extremity injury (OR, 4.03), severe abdominal injury (OR, 1.94), no injury (OR, 1.94), other abdominal injury (OR, 0.47), other head/neck injury (OR, 0.57), and other extremity injury (OR, 0.45) groups had significant ORs for missing data; the other group's OR was not significant (OR, 0.84). All 407 missing FAST values were imputed, with 109 classified as positive. Correct classification of nonmissing FAST results using the alternate variables was 87.2%. CONCLUSION: Purposeful imputation for missing FAST examinations based on interactions among selected variables assessed by simple stratification may be a useful adjunct to sensitivity analysis in the evaluation of imputation strategies under different missing data mechanisms. This approach has the potential for widespread application in clinical and translational research, and validation is warranted.


Assuntos
Transfusão de Sangue/métodos , Hemorragia/diagnóstico por imagem , Hemorragia/terapia , Centros de Traumatologia , Ferimentos e Lesões/diagnóstico por imagem , Ferimentos e Lesões/terapia , Adulto , Feminino , Hemorragia/mortalidade , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Projetos de Pesquisa , Ressuscitação/métodos , Resultado do Tratamento , Ultrassonografia , Estados Unidos/epidemiologia , Ferimentos e Lesões/mortalidade
11.
Neurobiol Aging ; 33(12): 2892-902, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22405044

RESUMO

Efferent innervation of the cochlea undergoes extensive modification early in development, but it is unclear if efferent synapses are modified by age, hearing loss, or both. Structural alterations in the cochlea affecting information transfer from the auditory periphery to the brain may contribute to age-related hearing deficits. We investigated changes to efferent innervation in the vicinity of inner hair cells (IHCs) in young and old C57BL/6 mice using transmission electron microscopy to reveal increased efferent innervation of IHCs in older animals. Efferent contacts on IHCs contained focal presynaptic accumulations of small vesicles. Synaptic vesicle size and shape were heterogeneous. Postsynaptic cisterns were occasionally observed. Increased IHC efferent innervation was associated with a smaller number of afferent synapses per IHC, increased outer hair cell loss, and elevated auditory brainstem response thresholds. Efferent axons also formed synapses on afferent dendrites but with a reduced prevalence in older animals. Age-related reduction of afferent activity may engage signaling pathways that support the return to an immature state of efferent innervation of the cochlea.


Assuntos
Envelhecimento , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Vias Eferentes/fisiologia , Células Ciliadas Auditivas Internas/citologia , Sinapses/ultraestrutura , Estimulação Acústica , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Sinapses/fisiologia
12.
J Neurosci ; 31(42): 15092-101, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22016543

RESUMO

In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-clamp recordings from inner hair cells (IHCs) in acutely excised apical turns of the rat cochlea from embryonic day 21 to postnatal day 8 (P8). Responses to 1 mm acetylcholine (ACh) were detected from P0 on in almost every IHC. The ACh-activated current amplitude increased with age and demonstrated the same pharmacology as α9-containing nAChRs. Interestingly, at P0, the ACh response was not coupled to SK2 channels, so that the initial cholinergic response was excitatory and could trigger action potentials in IHCs. Coupling to SK current was detected earliest at P1 in a subset of IHCs and by P3 in every IHC studied. Clustered nAChRs and SK2 channels were found on IHCs from P1 on using Alexa Fluor 488 conjugated α-bungarotoxin and SK2 immunohistochemistry. The number of nAChRs clusters increased with age to 16 per IHC at P8. Cholinergic efferent synaptic currents first appeared in a subset of IHCs at P1 and by P3 in every IHC studied, contemporaneously with ACh-evoked SK currents, suggesting that SK2 channels may be necessary at onset of synaptic function. An analogous pattern of development was observed for the efferent synapses that form later (P6-P8) on outer hair cells in the basal cochlea.


Assuntos
Colinérgicos/metabolismo , Cóclea , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Ciliadas Auditivas/fisiologia , Sinapses/fisiologia , Acetilcolina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Biofísica , Bungarotoxinas/metabolismo , Cóclea/citologia , Cóclea/embriologia , Cóclea/crescimento & desenvolvimento , Estimulação Elétrica , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Glicinérgicos/farmacologia , Masculino , Técnicas de Patch-Clamp/métodos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Estricnina/farmacologia , Sinapses/efeitos dos fármacos , Fatores de Tempo
13.
J Neurosci ; 31(41): 14763-74, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21994392

RESUMO

In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9α10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier.


Assuntos
Cóclea/citologia , Nervo Coclear/fisiologia , Células Ciliadas Auditivas/fisiologia , Inibição Neural/fisiologia , Sinapses/fisiologia , Estimulação Acústica , Animais , Animais Recém-Nascidos , Biofísica , Quelantes , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Feminino , Glicinérgicos/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Técnicas In Vitro , Indóis/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibição Neural/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Peptídeos/farmacologia , Antagonistas da Serotonina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Estricnina/farmacologia , Sinapses/efeitos dos fármacos , Temperatura , Tetrodotoxina/farmacologia , Fatores de Tempo , Tropizetrona
15.
PLoS One ; 5(11): e13836, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079807

RESUMO

BACKGROUND: Outer hair cells are the specialized sensory cells that empower the mammalian hearing organ, the cochlea, with its remarkable sensitivity and frequency selectivity. Sound-evoked receptor potentials in outer hair cells are shaped by both voltage-gated K(+) channels that control the membrane potential and also ligand-gated K(+) channels involved in the cholinergic efferent modulation of the membrane potential. The objectives of this study were to investigate the tonotopic contribution of BK channels to voltage- and ligand-gated currents in mature outer hair cells from the rat cochlea. METHODOLOGY/PRINCIPAL: Findings In this work we used patch clamp electrophysiology and immunofluorescence in tonotopically defined segments of the rat cochlea to determine the contribution of BK channels to voltage- and ligand-gated currents in outer hair cells. Although voltage and ligand-gated currents have been investigated previously in hair cells from the rat cochlea, little is known about their tonotopic distribution or potential contribution to efferent inhibition. We found that apical (low frequency) outer hair cells had no BK channel immunoreactivity and little or no BK current. In marked contrast, basal (high frequency) outer hair cells had abundant BK channel immunoreactivity and BK currents contributed significantly to both voltage-gated and ACh-evoked K(+) currents. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that basal (high frequency) outer hair cells may employ an alternative mechanism of efferent inhibition mediated by BK channels instead of SK2 channels. Thus, efferent synapses may use different mechanisms of action both developmentally and tonotopically to support high frequency audition. High frequency audition has required various functional specializations of the mammalian cochlea, and as shown in our work, may include the utilization of BK channels at efferent synapses. This mechanism of efferent inhibition may be related to the unique acetylcholine receptors that have evolved in mammalian hair cells compared to those of other vertebrates.


Assuntos
Colinérgicos/farmacologia , Células Ciliadas Auditivas/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Acetilcolina/farmacologia , Animais , Apamina/farmacologia , Charibdotoxina/farmacologia , Cóclea/citologia , Células Ciliadas Auditivas Externas/fisiologia , Imuno-Histoquímica , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios Eferentes/efeitos dos fármacos , Neurônios Eferentes/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
16.
Biochem Pharmacol ; 78(7): 712-9, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19481062

RESUMO

Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits amplification brought about by the active mechanical process inherent to these cells. This feedback system offers the potential to improve the detection of signals in background noise, to selectively attend to particular signals, and to protect the periphery from damage caused by overly loud sounds. Acetylcholine released at the synapse between efferent terminals and outer hair cells activates a peculiar nicotinic cholinergic receptor subtype, the alpha9alpha10 receptor. At present no pharmacotherapeutic approaches have been designed that target this cholinergic receptor to treat pathologies of the auditory system. The potential use of alpha9alpha10 selective drugs in conditions such as noise-induced hearing loss, tinnitus and auditory processing disorders is discussed.


Assuntos
Células Ciliadas Auditivas/fisiologia , Receptores Nicotínicos/fisiologia , Acetilcolina/metabolismo , Animais , Transtornos da Percepção Auditiva/tratamento farmacológico , Transtornos da Percepção Auditiva/metabolismo , Cóclea/anatomia & histologia , Cóclea/fisiologia , Dislexia/tratamento farmacológico , Dislexia/metabolismo , Perda Auditiva/tratamento farmacológico , Perda Auditiva/etiologia , Humanos , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Subunidades Proteicas/fisiologia , Transmissão Sináptica , Zumbido/tratamento farmacológico , Zumbido/metabolismo
17.
J Assoc Res Otolaryngol ; 10(3): 397-406, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19452222

RESUMO

Efferent inhibition of cochlear hair cells is mediated by alpha9alpha10 nicotinic cholinergic receptors (nAChRs) functionally coupled to calcium-activated, small conductance (SK2) potassium channels. Before the onset of hearing, efferent fibers transiently make functional cholinergic synapses with inner hair cells (IHCs). The retraction of these fibers after the onset of hearing correlates with the cessation of transcription of the Chrna10 (but not the Chrna9) gene in IHCs. To further analyze this developmental change, we generated a transgenic mice whose IHCs constitutively express alpha10 into adulthood by expressing the alpha10 cDNA under the control of the Pou4f3 gene promoter. In situ hybridization showed that the alpha10 mRNA is expressed in IHCs of 8-week-old transgenic mice, but not in wild-type mice. Moreover, this mRNA is translated into a functional protein, since IHCs from P8-P10 alpha10 transgenic mice backcrossed to a Chrna10(-/-) background (whose IHCs have no cholinergic function) displayed normal synaptic and acetylcholine (ACh)-evoked currents in patch-clamp recordings. Thus, the alpha10 transgene restored nAChR function. However, in the alpha10 transgenic mice, no synaptic or ACh-evoked currents were observed in P16-18 IHCs, indicating developmental down-regulation of functional nAChRs after the onset of hearing, as normally observed in wild-type mice. The lack of functional ACh currents correlated with the lack of SK2 currents. These results indicate that multiple features of the efferent postsynaptic complex to IHCs, in addition to the nAChR subunits, are down-regulated in synchrony after the onset of hearing, leading to lack of responses to ACh.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Audição/fisiologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Colinérgicos/farmacologia , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Audição/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Animais , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Fator de Transcrição Brn-3C/genética , Fator de Transcrição Brn-3C/metabolismo
18.
PLoS Biol ; 7(1): e18, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19166271

RESUMO

The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T) at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T) mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.


Assuntos
Acetilcolina/metabolismo , Colinérgicos/metabolismo , Células Ciliadas Auditivas/fisiologia , Neurônios Eferentes/fisiologia , Mutação Puntual , Receptores Nicotínicos/genética , Animais , Vias Auditivas/fisiologia , Limiar Auditivo/fisiologia , Cóclea/metabolismo , Modelos Animais de Doenças , Retroalimentação Fisiológica/fisiologia , Perda Auditiva Neurossensorial/prevenção & controle , Camundongos , Camundongos Mutantes , Canais de Potássio/fisiologia , Receptores Nicotínicos/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia
19.
J Physiol ; 586(22): 5471-85, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18818242

RESUMO

Efferent inhibition of cochlear hair cells is mediated by 'nicotinic' cholinergic receptors functionally coupled to calcium-activated, small conductance (SK2) potassium channels. We recorded from cochlear hair cells in SK2 knockout mice to evaluate further the role of this channel in efferent function. Since cholinergic inhibitory synapses can be found on inner or outer hair cells, depending on developmental age, both cell types were studied. To determine if SK channel activity was indeed eliminated, seconds-long voltage-gated calcium influx was used to activate slowly rising and falling calcium-dependent potassium currents. These were identified as SK currents by their time course, calcium dependence and sensitivity to block by apamin in wild-type IHCs. IHCs from knockout mice had no SK current by these same criteria. Thus, the SK2 gene is solely responsible for encoding the SK channels of inner hair cells. Other aspects of hair cell excitability remained relatively unaffected. Unexpectedly, cholinergic synaptic currents were entirely absent from both inner and outer SK2-knockout hair cells. Further, direct application of ACh caused no change in membrane current, implying absent or otherwise dysfunctional ACh receptors. Immunohistology of whole-mounts using the antibody to the synaptic vesicle protein 2 (SV2) revealed a pronounced reduction of efferent innervation to outer hair cells (OHCs) in the knockout cochleas. Quantitative RT-PCR analysis, however, showed no change in the mRNA levels of alpha9 and alpha10 nicotinic ACh receptor (nAChR) genes. Thus, some aspect of translation or subsequent protein processing leads to non-functional or absent ACh receptors. These results indicate that SK2 channels are required both for expression of functional nAChRs, and for establishment and/or maintenance of efferent terminals in the cochlea.


Assuntos
Células Ciliadas Auditivas/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Animais Recém-Nascidos , Sequência de Bases , Canais de Cálcio/metabolismo , Primers do DNA/genética , Vias Eferentes/metabolismo , Estimulação Elétrica , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
20.
J Assoc Res Otolaryngol ; 8(4): 474-83, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17647061

RESUMO

The efferent synaptic specialization of hair cells includes a near-membrane synaptic cistern, whose presence suggests a role for internal calcium stores in cholinergic inhibition. Calcium release channels from internal stores include 'ryanodine receptors', whose participation is usually demonstrated by sensitivity to the eponymous plant alkaloid, ryanodine. However, use of this and other store-active compounds on hair cells could be confounded by the unusual pharmacology of the alpha9alpha10-containing hair cell nicotinic cholinergic receptor (nAChR), which has been shown to be antagonized by a broad spectrum of compounds. Surprisingly, we found that ryanodine, rather than antagonizing, is a positive modulator of the alpha9alpha10 nAChR expressed in Xenopus oocytes, the first such compound to be found. The effect of ryanodine was to increase the apparent affinity and efficacy for acetylcholine (ACh). Correspondingly, ACh-evoked currents through the isolated cholinergic receptors of inner hair cells in excised mouse cochleas were approximately doubled by 200 microM ryanodine, a concentration that inhibits gating of the ryanodine receptor itself. This unusual positive modulation was not unique to the mammalian receptor. The response to ACh of chicken 'short' hair cells likewise was enhanced in the presence of 100 microM ryanodine. This facilitatory effect on current through the AChR could enhance brief ( approximately 1 s) activation of associated calcium-dependent K(+) (SK) channels in both chicken short hair cells and rat outer hair cells. This novel effect of ryanodine provides new opportunities for the design of compounds that potentiate alpha9alpha10-mediated responses and for potential inner ear therapeutics based on this interaction.


Assuntos
Células Ciliadas Auditivas/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Receptores Colinérgicos/efeitos dos fármacos , Rianodina/farmacologia , Acetilcolina/farmacologia , Animais , Galinhas , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas/fisiologia , Camundongos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/fisiologia , Subunidades Proteicas/análise , Ratos , Receptores Colinérgicos/fisiologia , Receptores Nicotínicos/análise , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...