Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1237748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384483

RESUMO

Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.

2.
Heliyon ; 9(12): e23215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149209

RESUMO

Neuropeptides are a group of peptides derived from precursor proteins synthesized in neuronal and nonneuronal cells. The classical functions of neuropeptides have been extensively studied in mammals, including neuromodulation in the central nervous system, molecular signaling in the peripheral nervous system, and immunomodulation associated mainly with anti-inflammatory activity. In contrast, in teleosts, studies of the immunomodulatory function of these neuropeptides are limited. In Oncorhynchus mykiss, vasoactive intestinal peptide (VIP) mRNA sequences have not been cloned, and the role of VIP in modulating the immune system has not been studied. Furthermore, in relation to other neuropeptides with possible immunomodulatory function, such as ghrelin, there are also few studies. Therefore, in this work, we performed molecular cloning, identification, and phylogenetic analysis of three VIP precursor sequences (prepro-VIP1, VIP2 and VIP3) in rainbow trout. In addition, the immunomodulatory function of both neuropeptides was evaluated in an in vitro model using the VIP1 sequence identified in this work and a ghrelin sequence already studied in O. mykiss. The results suggest that the prepro-VIP2 sequence has the lowest percentage of identity with respect to the other homologous sequences and is more closely related to mammalian orthologous sequences. VIP1 induces significant expression of both pro-inflammatory (IFN-γ, IL-1ß) and anti-inflammatory (IL-10 and TGF-ß) cytokines, whereas ghrelin only induces significant expression of proinflammatory cytokines such as IL-6 and TNF-α.

3.
Inorg Chem ; 62(47): 19195-19207, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37956256

RESUMO

This work reports the structural characterization and photophysical properties of DyIII, TbIII, and EuIII coordination polymers with two phenoxo-triazole-based ligands [2,6-di(1H-1,2,4-triazole-1-yl-methyl)-4-R-phenoxo, LRTr (R = CH3; Cl)]. These ligands permitted us to obtain isostructural polymers, described as a 1D double chain, with LnIII being nona-coordinated. The energies of the ligand triplet (T1) states were estimated using low-temperature time-resolved emission spectra of YIII analogues. Compounds with LClTr present higher emission intensity than those with LMeTr. The emission of TbIII compounds was not affected by the different excitation wavelengths used and was emitted in the pure green region. In contrast, DyLMeTr emits in the blue-to-white region, while the luminescence of DyLClTr remains in the white region for all excitation wavelengths. On the other hand, EuIII compounds emit in the blue (ligand) or red region (EuIII) depending on the substituent of the phenoxo moiety and excitation wavelength. Theoretical calculations were employed to determine the excited states of the ligands by using time-dependent density functional theory. These calculations aided in modeling the intramolecular energy transfer and rationalizing the optical properties and demonstrated that the sensitization of the LnIII ions is driven via S1 → LnIII, a process that is less common as compared to T1 → LnIII.

4.
Front Aging Neurosci ; 15: 1180987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358955

RESUMO

Background: Growing evidence suggests that the non-receptor tyrosine kinase, c-Abl, plays a significant role in the pathogenesis of Alzheimer's disease (AD). Here, we analyzed the effect of c-Abl on the cognitive performance decline of APPSwe/PSEN1ΔE9 (APP/PS1) mouse model for AD. Methods: We used the conditional genetic ablation of c-Abl in the brain (c-Abl-KO) and pharmacological treatment with neurotinib, a novel allosteric c-Abl inhibitor with high brain penetrance, imbued in rodent's chow. Results: We found that APP/PS1/c-Abl-KO mice and APP/PS1 neurotinib-fed mice had improved performance in hippocampus-dependent tasks. In the object location and Barnes-maze tests, they recognized the displaced object and learned the location of the escape hole faster than APP/PS1 mice. Also, APP/PS1 neurotinib-fed mice required fewer trials to reach the learning criterion in the memory flexibility test. Accordingly, c-Abl absence and inhibition caused fewer amyloid plaques, reduced astrogliosis, and preserved neurons in the hippocampus. Discussion: Our results further validate c-Abl as a target for AD, and the neurotinib, a novel c-Abl inhibitor, as a suitable preclinical candidate for AD therapies.

5.
Dalton Trans ; 52(10): 3158-3168, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36790124

RESUMO

Considering the structural design of some of the scarce molecular-based Er-centred emitters in the literature, we explored the optical properties of three ErIII hexaazamacrocyclic complexes, namely Er-EDA (1), Er-OPDA(2) and Er-DAP(3). The macrocyclic ligands in these complexes differ in the lateral spacers, and are derived from 2,6-pyridine-dicarbaldehyde and ethylenediamine (EDA), ortho-phenylenediamine (OPDA) or 1,3-diaminopropane (DAP). Upon ligand-centred excitation, the bluish-green and green emissions of the ErIII ion were detected only for the complexes containing macrocycles with aliphatic spacers (1 and 3), which evidenced that these ligands can sensitize the ErIII luminescence. On the other hand, the ligand derived from the aromatic diamine (2) does not sensitize the ErIII luminescence. Energy transfer mechanisms, temperature sensing, CIE coordinates and CCT values were analyzed. Besides the excitation in the ligands, the erbium-centred excitation at 980 nm allowed the detection, in all cases, of bluish-green, green and red up-converted emissions, and also the downshifted NIR emission. The possible mechanisms involved in these transitions were described and analyzed according to the available data.

6.
Inorg Chem ; 61(41): 16347-16355, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36198146

RESUMO

Two mononuclear DyIII complexes, [Dy(L1)(NCS)3] (Dy-EDA) and [Dy(L2)(NCS)3] (Dy-DAP), where Ln (n = 1-2) corresponds to a macrocyclic ligand derived from 2,6-pyridinedicarboxaldehyde and ethylenediamine (L1) and 1,3-diaminepropane (L2) were immobilized on functionalized silicon-based surfaces. This was achieved by the microcontact printing (µCP) technique, generating patterns on a functionalized surface via covalent bond formation through the auxiliary -NCS ligands present in the macrocyclic complex species. With this strategy, it was possible to control the position of the immobilized molecules on the surface. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectra (IRRAS), and atomic force microscopy (AFM) confirmed that the surfaces were successfully functionalized. Furthermore, the optical properties in a broad temperature range were investigated for the as-prepared compounds. At room temperature, Dy-EDA was shown to emit in the deep blue region (Commission Internationald'Eclairage (CIE): (0.175, 0.128)), while Dy-DAP in the white region (CIE: (0.252, 0.312)). The different CIE values were due to the contribution of the strong emission of the ligand in the case of Dy-EDA. Besides, surface photoluminescence measurements showed that the immobilized complexes retained their bulk emissive properties.

7.
Chemistry ; 28(48): e202200336, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35648577

RESUMO

Enhancement of axial magnetic anisotropy is the central objective to push forward the performance of Single-Molecule Magnet (SMM) complexes. In the case of mononuclear lanthanide complexes, the chemical environment around the paramagnetic ion must be tuned to place strongly interacting ligands along either the axial positions or the equatorial plane, depending on the oblate or prolate preference of the selected lanthanide. One classical strategy to achieve a precise chemical environment for a metal centre is using highly structured, chelating ligands. A natural approach for axial-equatorial control is the employment of macrocycles acting in a belt conformation, providing the equatorial coordination environment, and leaving room for axial ligands. In this review, we present a survey of SMMs based on the macrocycle belt motif. Literature systems are divided in three families (crown ether, Schiff-base and metallacrown) and their general properties in terms of structural stability and SMM performance are briefly discussed.

8.
Brain Sci ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36671983

RESUMO

The septal complex regulates both motivated and innate behaviors, chiefly by the action of its diverse population of long-range projection neurons. A small population of somatostatin-expressing GABAergic cells in the lateral septum projects deep into subcortical regions, yet on its way it also targets neighboring medial septum neurons that profusely innervate cortical targets by ascending synaptic pathways. Here, we used optogenetic stimulation and extracellular recordings in acutely anesthetized transgenic mice to show that lateral septum somatostatin neurons can disinhibit the cholinergic septo-hippocampal pathway, thus enhancing the amplitude and synchrony of theta oscillations while depressing sharp-wave ripple episodes in the dorsal hippocampus. These results suggest that septal somatostatin cells can recruit ascending cholinergic pathways to promote hippocampal theta oscillations.

9.
Cereb Cortex ; 31(2): 1046-1059, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33026440

RESUMO

Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


Assuntos
Giro Denteado/citologia , Giro Denteado/metabolismo , Aprendizagem por Discriminação/fisiologia , Memória Episódica , Células Secretoras de Somatostatina/metabolismo , Animais , Giro Denteado/química , Feminino , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/métodos , Somatostatina/análise , Somatostatina/metabolismo , Células Secretoras de Somatostatina/química
10.
Dalton Trans ; 49(48): 17709-17718, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33237049

RESUMO

A family of hexaazamacrocyclic lanthanide complexes, [Ln(Ln)(NCS)3] (LnIII = Dy, Er; n = 1-3) has been synthesized and characterized by single-crystal X-ray diffraction, magnetic measurements and ab initio calculations. Macrocyclic ligands (Ln) differ in the lateral spacers, which are aliphatic chains with two and three carbons (for Ln, n = 1 and 2, respectively), and an aromatic ring for Ln = 3. Modification of the macrocycle spacer tunes planarity and rigidity of the equatorial coordination for both oblate (Dy) and prolate (Er) lanthanide ions. Ac-susceptibility studies showed that four of the six complexes are field induced single molecule magnets (SMMs). Trends in magnetic relaxation properties are rationalized with the aid of ab initio multireference calculations, highlighting the combined influence of macrocycle planarity, lanthanide electronic density distribution and intermolecular interactions for the achievement of slow demagnetization.

11.
Inorg Chem ; 59(8): 5447-5455, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32255645

RESUMO

A series of luminescent phenoxo-bridged dinuclear TbIII complexes with tripodal ligands, 2,2'-[[(2-pyridinylmethyl)imino]di(methylene)]-bis(4-R-phenol), where R = CH3 (LCH3) (I), Cl (LCl) (II), CH3O (LCH3O) (III), COOCH3 (LCOOCH3) (IV), were prepared to probe the effect of para-substitution on the phenol ring of the ligand on the TbIII luminescence. For these TbIII complexes a complete suppression of the ligand-centered fluorescence is observed, which demonstrates an efficient ligand-to-metal energy transfer. Complex IV was found to be the one that shows the greater intensity of the emission at room temperature. The obtained quantum yields follow the trend IV > II ≫ I > III. The quantum yield for II and IV is approximately five times greater than those obtained for I and III, indicating that the LCl and LCOOCH3 are better sensitizers of the TbIII ions. These results were rationalized in terms of the variation of the energy gap between the triplet level (T1) of the ligand and the emissive 5D4 level of TbIII, due to the electron-acceptor or electron-donor properties of the substituents. The τav values are in the millisecond range for all the studied complexes and resulted independent of temperature. The Commission International d'Eclairage coordinates (CIE) for all complexes are in the green color region, being insensitive to the variation of temperature. Moreover, the color purity (CP) is ca. 90% for all complexes, being ca. 100% for IV. Thus, the introduction of electron-acceptor substituents on the ligand permitted us to improve the luminescent properties of the TbIII complexes.

12.
J Ind Microbiol Biotechnol ; 47(3): 299-309, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32086638

RESUMO

Piscirickettsia salmonis is a facultative Gram-negative intracellular bacterium that produces piscirickettsiosis, disease that causes a high negative impact in salmonid cultures. The so-far-unidentified nutritional requirements have hindered its axenic culture at laboratory and industrial scales for the formulation of vaccines. The present study describes the development of a defined culture medium for P. salmonis. The culture medium was formulated through rational design involving auxotrophy test and statistical designs of experiments, considering the genome-scale metabolic reconstruction of P. salmonis reported by our group. The whole optimization process allowed for a twofold increase in biomass and a reduction of about 50% of the amino acids added to the culture medium. The final culture medium contains twelve amino acids, where glutamic acid, threonine and arginine were the main carbon and energy sources, supporting 1.65 g/L of biomass using 6.5 g/L of amino acids in the formulation. These results will contribute significantly to the development of new operational strategies to culture this bacterium for the production of vaccines.


Assuntos
Piscirickettsia/crescimento & desenvolvimento , Vacinas/imunologia , Meios de Cultura , Vacinas/metabolismo
13.
Cereb Cortex ; 30(7): 4011-4025, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108230

RESUMO

Adaptive behavior requires the comparison of outcome predictions with actual outcomes (e.g., performance feedback). This process of performance monitoring is computed by a distributed brain network comprising the medial prefrontal cortex (mPFC) and the anterior insular cortex (AIC). Despite being consistently co-activated during different tasks, the precise neuronal computations of each region and their interactions remain elusive. In order to assess the neural mechanism by which the AIC processes performance feedback, we recorded AIC electrophysiological activity in humans. We found that the AIC beta oscillations amplitude is modulated by the probability of performance feedback valence (positive or negative) given the context (task and condition difficulty). Furthermore, the valence of feedback was encoded by delta waves phase-modulating the power of beta oscillations. Finally, connectivity and causal analysis showed that beta oscillations relay feedback information signals to the mPFC. These results reveal that structured oscillatory activity in the anterior insula encodes performance feedback information, thus coordinating brain circuits related to reward-based learning.


Assuntos
Adaptação Psicológica/fisiologia , Tomada de Decisões , Retroalimentação Psicológica/fisiologia , Feedback Formativo , Córtex Insular/fisiologia , Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Ritmo beta/fisiologia , Epilepsia Resistente a Medicamentos , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Leitura , Memória Espacial , Adulto Jovem
14.
Neuroscience ; 428: 242-251, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31917346

RESUMO

Growing evidence indicates that GABAergic interneurons play a pivotal role to generate brain oscillation patterns, which are fundamental for the mnemonic processing of the hippocampus. While acetylcholine (ACh) is a powerful modulator of synaptic plasticity and brain function, few studies have been focused on the role of cholinergic signaling in the regulation of GABAergic inhibitory synaptic plasticity. We have previously shown that co-activation of endocannabinoids (CB1R) and muscarinic receptor (mAChR) in hippocampal interneurons can induce activity-dependent GABAergic long-term depression in CA1 pyramidal neurons. Here, using electrophysiological and pharmacological approaches in acute rat hippocampal slices, we show that activation of cholinergic receptors followed by either high-frequency stimulation of Schaeffer collaterals or exogenous activation of metabotropic glutamate receptor (mGluR) induces a robust long-term potentiation at GABAergic synapses (iLTP). These forms of iLTP are blocked by the M1 type of mAChR (MR1) or by the group I of mGluR (mGluR1/5) antagonists. These results suggest the existence of spatiotemporal cooperativity between cholinergic and glutamatergic pathways where activation of mAChR serves as a metaplastic switch making glutamatergic synapses capable to induce long-term potentiation at inhibitory synapses, that may contribute to the modulation of brain mechanisms of learning and memory.


Assuntos
Neurônios GABAérgicos , Potenciação de Longa Duração , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Humanos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
15.
Front Cell Neurosci ; 13: 372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481877

RESUMO

Schizophrenia (SZ) is associated with changes in the structure and function of several brain areas. Several findings suggest that these impairments are related to a dysfunction in γ-aminobutyric acid (GABA) neurotransmission in brain areas such as the medial prefrontal cortex (mPFC), the hippocampus (HPC) and the primary auditory cortex (A1); however, it is still unclear how the GABAergic system is disrupted in these brain areas. Here, we examined the effect of ketamine (Ket) administration during late adolescence in rats on inhibition in the mPFC-, ventral HPC (vHPC), and A1. We observe that Ket treatment reduced the expression of the calcium-binding protein parvalbumin (PV) and the GABA-producing enzyme glutamic acid decarboxylase 67 (GAD67) as well as decreased inhibitory synaptic efficacy in the mPFC. In addition, Ket-treated rats performed worse in executive tasks that depend on the integrity and proper functioning of the mPFC. Conversely, we do not find such changes in vHPC or A1. Together, our results provide strong experimental support for the hypothesis that during adolescence, the function of the mPFC is more susceptible than that of HPC or A1 to NMDAR hypofunction, showing apparent structure specificity. Thus, the impairment of inhibitory circuitry in mPFC could be a convergent primary site of SZ-like behavior during the adulthood.

16.
Front Cell Dev Biol ; 7: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31482091

RESUMO

Adult neurogenesis persists in the adult hippocampus due to the presence of multipotent neural stem cells (NSCs). Hippocampal neurogenesis is involved in a range of cognitive functions and is tightly regulated by neuronal activity. NSCs respond promptly to physiological and pathological stimuli altering their neurogenic and gliogenic potential. In a mouse model of mesial temporal lobe epilepsy (MTLE), seizures triggered by the intrahippocampal injection of the glutamate receptor agonist kainic acid (KA) induce NSCs to convert into reactive NSCs (React-NSCs) which stop producing new neurons and ultimately generate reactive astrocytes thus contributing to the development of hippocampal sclerosis and abolishing neurogenesis. We herein show how seizures triggered by the injection of KA in the amygdala, an alternative model of MTLE which allows parallel experimental manipulation in the dentate gyrus, also trigger the induction of React-NSCs and provoke the disruption of the neurogenic niche resulting in impaired neurogenesis. These results highlight the sensitivity of NSCs to the surrounding neuronal circuit activity and demonstrate that the induction of React-NSCs and the disruption of the neurogenic niche are not due to the direct effect of KA in the hippocampus. These results also suggest that neurogenesis might be lost in the hippocampus of patients with MTLE. Indeed we provide results from human MTLE samples absence of cell proliferation, of neural stem cell-like cells and of neurogenesis.

17.
Front Behav Neurosci ; 13: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354444

RESUMO

Alteration in social behavior is one of the most debilitating symptoms of major depression, a stress related mental illness. Social behavior is modulated by the reward system, and gamma oscillations in the nucleus accumbens (NAc) seem to be associated with reward processing. In this scenario, the role of gamma oscillations in depression remains unknown. We hypothesized that gamma oscillations in the rat NAc are sensitive to the effects of social distress. One group of male Sprague-Dawley rats were exposed to chronic social defeat stress (CSDS) while the other group was left undisturbed (control group). Afterward, a microelectrode array was implanted in the NAc of all animals. Local field potential (LFP) activity was acquired using a wireless recording system. Each implanted rat was placed in an open field chamber for a non-social interaction condition, followed by introducing another unfamiliar rat, creating a social interaction condition, where the implanted rat interacted freely and continuously with the unfamiliar conspecific in a natural-like manner (see Supplementary Videos). We found that the high-gamma band power in the NAc of non-stressed rats was higher during the social interaction compared to a non-social interaction condition. Conversely, we did not find significant differences at this level in the stressed rats when comparing the social interaction- and non-social interaction condition. These findings suggest that high-gamma oscillations in the NAc are involved in social behavior. Furthermore, alterations at this level could be an electrophysiological signature of the effect of chronic social stress on reward processing.

18.
Sci Rep ; 9(1): 2570, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796293

RESUMO

The basal forebrain delivers extensive axonal projections to the cortical mantle regulating brain states and cognitive processing. Recent evidence has established the basal forebrain as a subcortical node of the default mode network that directionally influences cortical dynamics trough gamma oscillations, yet their synaptic origin has not been established. Here, we used optogenetic stimulation and in vivo recordings of transgenic mice to show that somatostatin neurons exert an anatomically specialized role in the coordination of subcortical gamma oscillations of the rostral basal forebrain. Indeed, the spike timing of somatostatin cells was tightly correlated with gamma oscillations in the ventral pallidum, but not in the medial septum. Consequently, optogenetic inactivation of somatostatin neurons selectively disrupted the amplitude and coupling of gamma oscillations only in the ventral pallidum. Moreover, photosupression of somatostatin cells produced specific behavioral interferences, with the ventral pallidum regulating locomotor speed and the medial septum modulating spatial working memory. Altogether, these data suggest that basal forebrain somatostatin cells can selectively synchronize local neuronal networks in the gamma band directly impinging on cortical dynamics and behavioral performance. This further supports the role of the basal forebrain as a subcortical switch commanding transitions between internally and externally oriented brain states.


Assuntos
Prosencéfalo Basal/metabolismo , Cognição , Ritmo Gama , Atividade Motora , Neurônios/metabolismo , Somatostatina/metabolismo , Animais , Prosencéfalo Basal/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Somatostatina/genética
19.
Cereb Cortex ; 29(1): 42-53, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29161383

RESUMO

The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Prosencéfalo Basal/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Somatostatina/fisiologia , Animais , Prosencéfalo Basal/química , Prosencéfalo Basal/citologia , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/química , Optogenética/métodos , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/química , Córtex Pré-Frontal/citologia , Somatostatina/análise
20.
Proc Natl Acad Sci U S A ; 115(27): 7123-7128, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915053

RESUMO

Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.


Assuntos
Ritmo Gama/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Córtex Pré-Frontal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...