Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Microbiol ; 15: 1389663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591031

RESUMO

The rise of multidrug-resistant bacteria is a global concern, leading to a renewed reliance on older antibiotics like polymyxins as a last resort. Polymyxins, cationic cyclic peptides synthesized nonribosomally, feature a hydrophobic acyl tail and positively charged residues. Their antimicrobial mechanism involves initial interaction with Gram-negative bacterial outer-membrane components through polar and hydrophobic interactions. Outer membrane vesicles (OMVs), nano-sized proteoliposomes secreted from the outer membrane of Gram-negative bacteria, play a crucial role in tolerating harmful molecules, including cationic peptides such as polymyxins. Existing literature has documented environmental changes' impact on modulating OMV properties in Salmonella Typhimurium. However, less information exists regarding OMV production and characteristics in Salmonella Typhi. A previous study in our laboratory showed that S. Typhi ΔmrcB, a mutant associated with penicillin-binding protein (PBP, a ß-lactam antibiotic target), exhibited hypervesiculation. Consequently, this study investigated the potential impact of ß-lactam antibiotics on promoting polymyxin tolerance via OMVs in S. Typhi. Our results demonstrated that sub-lethal doses of ß-lactams increased bacterial survival against polymyxin B in S. Typhi. This phenomenon stems from ß-lactam antibiotics inducing hypervesiculation of OMVs with higher affinity for polymyxin B, capturing and diminishing its biologically effective concentration. These findings suggest that ß-lactam antibiotic use may inadvertently contribute to decreased polymyxin effectivity against S. Typhi or other Gram-negative bacteria, complicating the effective treatment of infections caused by these pathogens. This study emphasizes the importance of evaluating the influence of ß-lactam antibiotics on the interaction between OMVs and other antimicrobial agents.

2.
Nanoscale ; 15(23): 9985-9992, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232241

RESUMO

Inkjet printing electronics is a growing market that reached 7.8 billion USD in 2020 and that is expected to grow to ∼23 billion USD by 2026, driven by applications like displays, photovoltaics, lighting, and radiofrequency identification. Incorporating two-dimensional (2D) materials into this technology could further enhance the properties of the existing devices and/or circuits, as well as enable the development of new concept applications. Along these lines, here we report an easy and cheap process to synthesize inks made of multilayer hexagonal boron nitride (h-BN)-an insulating 2D layered material-by the liquid-phase exfoliation method and use them to fabricate memristors. The devices exhibit multiple stochastic phenomena that are very attractive for use as entropy sources in electronic circuits for data encryption (physical unclonable functions [PUFs], true random number generators [TRNGs]), such as: (i) a very disperse initial resistance and dielectric breakdown voltage, (ii) volatile unipolar and non-volatile bipolar resistive switching (RS) with a high cycle-to-cycle variability of the state resistances, and (iii) random telegraph noise (RTN) current fluctuations. The clue for the observation of these stochastic phenomena resides on the unpredictable nature of the device structure derived from the inkjet printing process (i.e., thickness fluctuations, random flake orientations), which allows fabricating electronic devices with different electronic properties. The easy-to-make and cheap memristors here developed are ideal to encrypt the information produced by multiple types of objects and/or products, and the versatility of the inkjet printing method, which allows effortless deposition on any substrate, makes our devices especially attractive for flexible and wearable devices within the internet-of-things.


Assuntos
Eletrônica , Dispositivos Eletrônicos Vestíveis , Entropia , Tinta
3.
J Glob Antimicrob Resist ; 33: 328-336, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37211213

RESUMO

OBJECTIVES: Clostridioides difficile is a nosocomial pathogen that is associated with the use of antibiotics. One of the most worrying aspects of C. difficile infection is its ability to resist antimicrobial therapies, owing to spore formation. In several bacterial pathogens, proteases of the Clp family participate in phenotypes associated with persistence and virulence. This suggests that these proteins could be involved in virulence-related traits. In this study, we analysed the role of ClpC chaperone-protease of C. difficile in virulence-related traits by comparing the phenotypes of wild-type and mutant strains lacking the clpC gene (ΔclpC). METHODS: We performed biofilm, motility, spore formation, and cytotoxicity assays. RESULTS: Our results show significant differences between the wild-type and ΔclpC strains in all analysed parameters. CONCLUSIONS: Based on these findings, we conclude that clpC plays a role in the virulence properties of C. difficile.


Assuntos
Clostridioides difficile , Clostridioides difficile/genética , Clostridioides/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Antibacterianos/metabolismo
4.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986757

RESUMO

Medicinal plants have been used since prehistoric times and continue to treat several diseases as a fundamental part of the healing process. Inflammation is a condition characterized by redness, pain, and swelling. This process is a hard response by living tissue to any injury. Furthermore, inflammation is produced by various diseases such as rheumatic and immune-mediated conditions, cancer, cardiovascular diseases, obesity, and diabetes. Hence, anti-inflammatory-based treatments could emerge as a novel and exciting approach to treating these diseases. Medicinal plants and their secondary metabolites are known for their anti-inflammatory properties, and this review introduces various native Chilean plants whose anti-inflammatory effects have been evaluated in experimental studies. Fragaria chiloensis, Ugni molinae, Buddleja globosa, Aristotelia chilensis, Berberis microphylla, and Quillaja saponaria are some native species analyzed in this review. Since inflammation treatment is not a one-dimensional solution, this review seeks a multidimensional therapeutic approach to inflammation with plant extracts based on scientific and ancestral knowledge.

5.
J Phys Chem A ; 126(48): 8997-9007, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413983

RESUMO

Rhenium(I) tricarbonyl complexes have been described as suitable fluorophores, particularly for biological applications. fac-[Re(CO)3(N,N)L](0 or 1+) complexes, where N,N is a substituted dinitrogenated ligand (bipyridine or derivatives with relatively small substituents) and L the ancillary ligand [a pyridine Schiff base (PSB) harboring an intramolecular hydrogen bond (IHB)], have presented promissory results concerning their use as fluorophores, especially for walled cells (i.e., bacteria and fungi). In this work, we present a relativistic theoretical analysis of two series of fac-[Re(CO)3(N,N)PSB]1+ complexes to predict the role of the IHB in the ancillary ligand concerning their photophysical behavior. N,N corresponds to 2,2'-bipyridine (bpy) (series A) or 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine (deeb) (series B). We found that all the complexes present absorption in the visible light range. In addition, complexes presenting a PSB with an IHB exhibit luminescent emission suitable for biological purposes: large Stokes shift, emission in the range of 600-700 nm, and τ in the order of 10-2 to 10-3 s. By contrast, complexes with PSB lacking the IHB show a predicted emission with the lowest triplet excited-state energy entering the NIR region. These results suggest a role of the IHB as an important switcher between visible and NIR emissions in this kind of complexes. Since the PSB can be substituted to modulate the properties of the whole Re(I) complex, it will be interesting to explore whether other substitutions can also affect the photophysical properties, mainly the emission range.


Assuntos
2,2'-Dipiridil , Bases de Schiff , Ligação de Hidrogênio , Ligantes
6.
Foods ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741959

RESUMO

Food contamination with microorganisms is responsible for food spoilage, deterioration and change of organoleptic properties of foods. Besides, the growth of pathogenic microorganisms can provoke serious health problems if food is consumed. Innovative packaging, such as active packaging, is increasing rapidly in the food industry, especially in applying antimicrobials into delivery systems, such as sachets. Chile is a relevant hotspot for biodiversity conservation and a source of unique bio-resources with antimicrobial potential. In this review, fifteen native plants with antimicrobial properties are described. Their antimicrobial effects include an effect against human pathogens. Considering the emergence of antimicrobial resistance, searching for new antimicrobials to design new strategies for food pathogen control is necessary. Chilean flora is a promising source of antimicrobials to be used in active packaging. However, further studies are required to advance from laboratory tests of their antimicrobial effects to their possible effects and uses in active films.

7.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269699

RESUMO

Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.


Assuntos
Bactérias Gram-Positivas , Bases de Schiff , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Bases de Schiff/química , Bases de Schiff/farmacologia
8.
Food Chem ; 370: 131012, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500293

RESUMO

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Assuntos
Peumus , Animais , Antioxidantes/farmacologia , Frutas , Humanos , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta
9.
Dalton Trans ; 50(38): 13561-13571, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34514486

RESUMO

Theoretical methods of the SOC-NEVPT2 type combined with a molecular fragmentation scheme have been proven to be a powerful tool that allows explaining the luminescence sensitization mechanism in Ln(III) coordination compounds through the antenna effect. In this work, we have used this strategy to predict luminescence in a family of compounds of the Eu(R-phen)(BTA)3 type where R-phen = 5-methyl-1,10-phenanthroline (Me-phen), 5-nitro-1,10-71 phenanthroline (Nitro-phen), 4,5-diazafluoren-9-one (One-phen), or 5,6-epoxy-5,6-dihydro-1,10-72 phenanthroline (Epoxy-phen); and BTA = fluorinated ß-diketone. Possible sensitization pathways were elucidated from the energy difference between the ligand-centered triplet (3T) states and the emissive excited states of the Eu(III) fragments (Latva rules). Calculations show that the most probable mechanism occurs through the triplet state of the BTA which should be enriched by several parallel energy transfer pathways from R-phen substituents. The complexes were synthesized and structurally characterized by X-ray crystallography and various other physicochemical and spectroscopic methods to realize their optical properties and energy transfer pathways from dual antennae. Experimental results were in good agreement with the theoretical predictions, which reinforces the predictive power of the used theoretical methodology.

10.
Microorganisms ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209738

RESUMO

Yersinia ruckeri causes outbreaks of enteric redmouth disease in salmon aquaculture all over the world. The transient antibiotic tolerance exhibited by bacterial persisters is commonly thought to be responsible for outbreaks; however, the molecular factors underlying this behavior have not been explored in Y. ruckeri. In this study, we investigated the participation of the RNA chaperone Hfq from Y. ruckeri in antibiotic persistence. Cultures of the hfq-knockout mutant (Δhfq) exhibited faster replication, increased ATP levels and a more reductive environment than the wild type. The growth curves of bacteria exposed to sublethal concentrations of ampicillin, oxolinic acid, ciprofloxacin and polymyxin B revealed a greater susceptibility for the Δhfq strain. The time-kill curves of bacteria treated with the antibiotics mentioned above and florfenicol, using inoculums from exponential, stationary and biofilm cultures, demonstrated that the Δhfq strain has significant defects in persister cells production. To shed more light on the role of Hfq in antibiotic persistence, we analyzed its dependence on the (p)ppGpp synthetase RelA by determining the persister cells production in the absence of the relA gene. The ΔrelA and ΔrelAΔhfq strains displayed similar defects in persister cells formation, but higher than Δhfq strain. Similarly, stationary cultures of the ΔrelA and ΔrelAΔhfq strains exhibited comparable levels of ATP but higher than that of the Δhfq strain, indicating that relA is epistatic over hfq. Taken together, our findings provide valuable information on antibiotic persistence in Y. ruckeri, shedding light on the participation of Hfq in the persistence phenomenon.

11.
Drug Deliv ; 28(1): 1020-1030, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34060399

RESUMO

NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.


Assuntos
Ácido Diaminopimélico/análogos & derivados , Nanopartículas/química , Proteína Adaptadora de Sinalização NOD1/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Ácido Diaminopimélico/administração & dosagem , Ácido Diaminopimélico/farmacologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Camundongos , Poliésteres/química , Células RAW 264.7
12.
Front Microbiol ; 12: 672467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025627

RESUMO

The appearance of multi-resistant strains has contributed to reintroducing polymyxin as the last-line therapy. Although polymyxin resistance is based on bacterial envelope changes, other resistance mechanisms are being reported. Outer membrane vesicles (OMVs) are nanosized proteoliposomes secreted from the outer membrane of Gram-negative bacteria. In some bacteria, OMVs have shown to provide resistance to diverse antimicrobial agents either by sequestering and/or expelling the harmful agent from the bacterial envelope. Nevertheless, the participation of OMVs in polymyxin resistance has not yet been explored in S. Typhi, and neither OMVs derived from hypervesiculating mutants. In this work, we explored whether OMVs produced by the hypervesiculating strains Salmonella Typhi ΔrfaE (LPS synthesis), ΔtolR (bacterial envelope) and ΔdegS (misfolded proteins and σ E activation) exhibit protective properties against polymyxin B. We found that the OMVs extracted from S. Typhi ΔtolR and ΔdegS protect S. Typhi WT from polymyxin B in a concentration-depending manner. By contrast, the protective effect exerted by OMVs from S. Typhi WT and S. Typhi ΔrfaE is much lower. This effect is achieved by the sequestration of polymyxin B, as assessed by the more positive Zeta potential of OMVs with polymyxin B and the diminished antibiotic's availability when coincubated with OMVs. We also found that S. Typhi ΔtolR exhibited an increased MIC of polymyxin B. Finally, we determined that S. Typhi ΔtolR and S. Typhi ΔdegS, at a lesser level, can functionally and transiently transfer the OMV-mediated polymyxin B resistance to susceptible bacteria in cocultures. This work shows that mutants in genes related to OMVs biogenesis can release vesicles with improved abilities to protect bacteria against membrane-active agents. Since mutations affecting OMV biogenesis can involve the bacterial envelope, mutants with increased resistance to membrane-acting agents that, in turn, produce protective OMVs with a high vesiculation rate (e.g., S. Typhi ΔtolR) can arise. Such mutants can functionally transfer the resistance to surrounding bacteria via OMVs, diminishing the effective concentration of the antimicrobial agent and potentially favoring the selection of spontaneous resistant strains in the environment. This phenomenon might be considered the source for the emergence of polymyxin resistance in an entire bacterial community.

13.
Front Chem ; 9: 647816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842435

RESUMO

Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) can be used to separate proteins based mainly on their size such as in denaturing gels. Different staining methods have been reported to observe proteins in the gel matrix, where the most used dyes are generally anionic. Anionic dyes allow for interactions with protonated amino acids, retaining the dye in the proteins. Fluorescent staining is an alternative technique considered to be sensitive, safe, and versatile. Some anionic complexes based on d6 transition metals have been used for this purpose, where cationic dyes have been less explored in this context. In this work, we synthesized and characterized a new monocationic rhenium complex fac-[Re(CO)3(deeb)B2]+ (where deeb is 4,4'-bis(ethoxycarbonyl)-2,2'-bpy and B2 is 2,4-di-tert-butyl-6-(3H-imidazo[4,5-c]pyridine-2-yl)phenol). We carried out a structural characterization of this complex by MS+, FTIR, 1H NMR, D2O exchange, and HHCOSY. Moreover, we carried out UV-Vis, luminescence, and cyclic voltammetry experiments to understand the effect of ligands on the complex's electronic structure. We also performed relativistic theoretical calculations using the B3LYP/TZ2P level of theory and R-TDDFT within a dielectric continuum model (COSMO) to better understand electronic transitions and optical properties. We finally assessed the potential of fac-[Re(CO)3(deeb)B2]+ (as well as the precursor fac-Re(CO)3(deeb)Br and the free ligand B2) to stain proteins separated by SDS-PAGE. We found that only fac-[Re(CO)3(deeb)B2]+ proved viable to be directly used as a luminescent dye for proteins, presumably due to its interaction with negatively charged residues in proteins and by weak interactions provided by B2. In addition, fac-[Re(CO)3(deeb)B2]+ seems to interact preferentially with proteins and not with the gel matrix despite the presence of sodium dodecyl sulfate (SDS). In future applications, these alternative cationic complexes might be used alone or in combination with more traditional anionic compounds to generate counterion dye stains to improve the process.

14.
Microorganisms ; 9(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803635

RESUMO

Growing evidence indicates that small noncoding RNAs (sRNAs) play important regulatory roles during bacterial infection. In Salmonella Typhimurium, several sRNAs are strongly up-regulated within macrophages, but little is known about their role during the infection process. Among these sRNAs, the well-characterized paralogs RyhB-1 and RyhB-2 are two regulators of gene expression mainly related with the response to iron availability. To investigate the role of the sRNAs RyhB-1 and RyhB-2 from S. Typhimurium in the infection of RAW264.7 macrophages, we analyzed several phenotypic traits from intracellular mutant strains lacking one and both sRNAs. Deletion of RyhB-1 and/or RyhB-2 resulted in increased intracellular survival and faster replication within macrophages. The bacterial metabolic status inside macrophages was also analyzed, revealing that all the mutant strains exhibited higher intracellular levels of ATP and lower NAD+/NADH ratios than the wild type. Expression analyses from bacteria infecting macrophages showed that RyhB-1 and RyhB-2 affect the intra-macrophage expression of bacterial genes associated with the Salmonella pathogenicity island 1 (SPI-1) and the type III secretion system (T3SS). With a two-plasmid system and compensatory mutations, we confirmed that RyhB-1 and RyhB-2 directly interact with the mRNAs of the invasion chaperone SicA and the regulatory protein RtsB. Altogether, these results indicate that the RyhB homologs contribute to the S. Typhimurium virulence modulation inside macrophages by reducing the intracellular growth and down-regulating the SPI-1 gene expression.

15.
RSC Adv ; 11(59): 37181-37193, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496390

RESUMO

Over the last few years, luminescent Re(i) tricarbonyl complexes have been increasingly proposed as fluorophores suitable for fluorescence microscopy to visualize biological structures and cells. In this sense, incorporating an asymmetrical pyridine Schiff base (PSB) as the ancillary ligand strongly modifies the staining and luminescent properties of Re(i) tricarbonyl complexes. In this work, we analyzed two series of Re(i) tricarbonyl complexes with their respective PSB ligands: (1) fac-[Re(CO)3(2,2'-bpy)(PSB)]1+ and (2) fac-[Re(CO)3(4,4'-bis(ethoxycarbonyl)-2,2'-bpy)(PSB)]1+, where the PSB exhibits substitutions at positions 4 or 6 in the phenolic ring with methyl or halogen substituents. Thus, we performed computational relativistic DFT and TDDFT studies to determine their optical properties. The ten complexes analyzed showed absorption in the visible light range. Furthermore, our analyses, including zero-field splitting (ZFS), allowed us to determine that the low-lying excited state locates below the 3LLCT states. Interestingly, seven of the ten analyzed complexes, whose corresponding PSB harbors an intramolecular hydrogen bond (IHB), exhibited luminescent emission that could be suitable for biological purposes: large Stokes shift, emission in the range 600-700 nm and τ in the order of 10-2 to 10-3 s. Conversely, the three complexes lacking the IHB due to two halogen substituents in the corresponding PSB showed a predicted emission with the lowest triplet excited state energy entering the NIR region. The main differences in the complexes' photophysical behavior have been explained by the energy gap law and time-resolved luminescence. These results emphasize the importance of choosing suitable substituents at the 4 and 6 positions in the phenolic ring of the PSB, which determine the presence of the IHB since they modulate the luminescence properties of the Re(i) core. Therefore, this study could predict Re(i) tricarbonyl complexes' properties, considering the desired emission features for biological and other applications.

17.
Microbiol Res ; 242: 126629, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33153884

RESUMO

Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (ΔryhB-1) or RyhB-2 (ΔryhB-2) exhibited differential phenotypes. In comparison with the wild type, the ΔryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the ΔryhB-1 strain exhibited an increased survival. On the other hand, the ΔryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, ΔryhB-1, ΔryhB-2, and ΔryhB-1 ΔryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.


Assuntos
Fenômenos Fisiológicos Bacterianos , Doenças dos Peixes/microbiologia , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Yersinia ruckeri/genética , Yersinia ruckeri/fisiologia , Animais , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Peixes , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Fenótipo , Yersiniose
18.
Microorganisms ; 8(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348574

RESUMO

Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules' concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine's intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH's role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.

19.
Molecules ; 25(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545715

RESUMO

Botrytis cinerea is a ubiquitous necrotrophic filamentous fungal phytopathogen that lacks host specificity and can affect more than 1000 different plant species. In this work, we explored L1 [(E)-2-{[(2-aminopyridin-2-yl)imino]-methyl}-4,6-di-tert-butylphenol], a pyridine Schiff base harboring an intramolecular bond (IHB), regarding their antifungal activity against Botrytis cinerea. Moreover, we present a full characterization of the L1 by NMR and powder diffraction, as well as UV-vis, in the presence of previously untested different organic solvents. Complementary time-dependent density functional theory (TD-DFT) calculations were performed, and the noncovalent interaction (NCI) index was determined. Moreover, we obtained a scan-rate study on cyclic voltammetry of L1. Finally, we tested the antifungal activity of L1 against two strains of Botrytis cinerea (B05.10, a standard laboratory strain; and A1, a wild type strains isolated from Chilean blueberries). We found that L1 acts as an efficient antifungal agent against Botrytis cinerea at 26 °C, even better than the commercial antifungal agent fenhexamid. Although the antifungal activity was also observed at 4 °C, the effect was less pronounced. These results show the high versatility of this kind of pyridine Schiff bases in biological applications.


Assuntos
Antifúngicos , Botrytis/crescimento & desenvolvimento , Piridinas , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia
20.
Biochem Biophys Res Commun ; 526(3): 706-712, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253028

RESUMO

Toxin-antitoxin systems are known to be involved in many bacterial functions that can lead to growth arrest and cell death in response to stress. Typically, toxin and antitoxin genes of type I systems are located in opposite strands, where the antitoxin is a small antisense RNA (sRNA). In the present work we show that the sRNA IsrA from Salmonella Typhimurium down-regulates the expression of its overlapping gene STM0294.1n. Multiple sequence alignment and comparative structure analysis indicated that STM0294.1n belongs to the SymE toxin superfamily, and the gene was renamed iasE (IsrA-overlapping gene with similarity to SymE). The iasE expression was induced in response to mitomycin C, an SOS-inducing agent; conversely, IsrA overexpression repressed the iasE expression even in the presence of mitomycin C. Accordingly, the inactivation of IsrA with an anti-IsrA RNA expressed in trans abrogated the repressive effect of IsrA on the iasE expression. On the other hand, iasE overexpression, as well as the blockage of the antisense IsrA function, negatively affected bacterial growth, arguing for a toxic effect of the iasE gene product. Besides, a bacterial lysate obtained from the iasE-overexpressing strain exhibited endoribonuclease activity, as determined by a fluorometric assay based on fluorescent reporter RNAs. Together, these results indicate that the IasE/IsrA pair of S. Typhimurium constitutes a functional type I toxin-antitoxin system.


Assuntos
Proteínas de Bactérias/genética , RNA Antissenso/genética , RNA Bacteriano/genética , Resposta SOS em Genética/genética , Salmonella typhimurium/genética , Sequência de Aminoácidos , Antitoxinas/genética , Toxinas Bacterianas/genética , Endorribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mitomicina/metabolismo , Modelos Moleculares , Mutação , Fases de Leitura Aberta/genética , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...