Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2610, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521779

RESUMO

The rise of antibiotic resistance is a critical public health concern, requiring an understanding of mechanisms that enable bacteria to tolerate antimicrobial agents. Bacteria use diverse strategies, including the amplification of drug-resistance genes. In this paper, we showed that multicopy plasmids, often carrying antibiotic resistance genes in clinical bacteria, can rapidly amplify genes, leading to plasmid-mediated phenotypic noise and transient antibiotic resistance. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression in Escherichia coli MG1655, we showed that plasmid copy number variability stably maintains populations composed of cells with both low and high plasmid copy numbers. This diversity in plasmid copy number enhances the probability of bacterial survival in the presence of antibiotics, while also rapidly reducing the burden of carrying multiple plasmids in drug-free environments. Our results further support the tenet that multicopy plasmids not only act as vehicles for the horizontal transfer of genetic information between cells but also as drivers of bacterial adaptation, enabling rapid modulation of gene copy numbers. Understanding the role of multicopy plasmids in antibiotic resistance is critical, and our study provides insights into how bacteria can transiently survive lethal concentrations of antibiotics.


Assuntos
Antibacterianos , Escherichia coli , Plasmídeos/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Dosagem de Genes , Farmacorresistência Bacteriana/genética
2.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062982

RESUMO

Bacterial adaptation to stressful environments often produces evolutionary constraints whereby increases in resistance are associated with reduced fitness in a different environment. The exploitation of this resistance-cost trade-off has been proposed as the basis of rational antimicrobial treatment strategies designed to limit the evolution of drug resistance in bacterial pathogens. Recent theoretical, laboratory, and clinical studies have shown that fluctuating selection can maintain drug efficacy and even restore drug susceptibility, but can also increase the rate of adaptation and promote cross-resistance to other antibiotics. In this paper, we combine mathematical modeling, experimental evolution, and whole-genome sequencing to follow evolutionary trajectories towards ß-lactam resistance under fluctuating selective conditions. Our experimental model system consists of eight populations of Escherichia coli K12 evolving in parallel to a serial dilution protocol designed to dynamically control the strength of selection for resistance. We implemented adaptive ramps with mild and strong selection, resulting in evolved populations with similar levels of resistance, but with different evolutionary dynamics and diverging genotypic profiles. We found that mutations that emerged under strong selection are unstable in the absence of selection, in contrast to resistance mutations previously selected in the mild selection regime that were stably maintained in drug-free environments and positively selected for when antibiotics were reintroduced. Altogether, our population dynamics model and the phenotypic and genomic analysis of the evolved populations show that the rate of resistance adaptation is contingent upon the strength of selection, but also on evolutionary constraints imposed by prior drug exposures.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Mutação
3.
Math Biosci Eng ; 19(7): 6860-6882, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730286

RESUMO

Interactions between species are essential in ecosystems, but sometimes competition dominates over mutualism. The transition between mutualism-competition can have several implications and consequences, and it has hardly been studied in experimental settings. This work studies the mutualism between cross-feeding bacteria in strains that supply an essential amino acid for their mutualistic partner when both strains are exposed to antimicrobials. When the strains are free of antimicrobials, we found that, depending on the amount of amino acids freely available in the environment, the strains can exhibit extinction, mutualism, or competition. The availability of resources modulates the behavior of both species. When the strains are exposed to antimicrobials, the population dynamics depend on the proportion of bacteria resistant to the antimicrobial, finding that the extinction of both strains is eminent for low levels of the resource. In contrast, competition between both strains continues for high levels of the resource. An optimal control problem was then formulated to reduce the proportion of resistant bacteria, which showed that under cooperation, both strains (sensitive and resistant) are immediately controlled, while under competition, only the density of one of the strains is decreased. In contrast, its mutualist partner with control is increased. Finally, using our experimental data, we did parameters estimation in order to fit our mathematical model to the experimental data.


Assuntos
Microbiota , Simbiose , Bactérias , Teorema de Bayes , Dinâmica Populacional
4.
Front Microbiol ; 12: 606396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803935

RESUMO

With plasmid-mediated antibiotic resistance thriving and threatening to become a serious public health problem, it is paramount to increase our understanding of the forces that enable the spread and maintenance of drug resistance genes encoded in mobile genetic elements. The relevance of plasmids as vehicles for the dissemination of antibiotic resistance genes, in addition to the extensive use of plasmid-derived vectors for biotechnological and industrial purposes, has promoted the in-depth study of the molecular mechanisms controlling multiple aspects of a plasmids' life cycle. This body of experimental work has been paralleled by the development of a wealth of mathematical models aimed at understanding the interplay between transmission, replication, and segregation, as well as their consequences in the ecological and evolutionary dynamics of plasmid-bearing bacterial populations. In this review, we discuss theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid partition and copy-number control occurring at a cellular level, to their consequences in the population dynamics of complex microbial communities. We conclude by discussing future directions for this exciting research topic.

5.
J R Soc Interface ; 16(158): 20190363, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31506045

RESUMO

The current crisis of antimicrobial resistance in clinically relevant pathogens has highlighted our limited understanding of the ecological and evolutionary forces that drive drug resistance adaptation. For instance, although human tissues are highly heterogeneous, most of our mechanistic understanding about antibiotic resistance evolution is based on constant and well-mixed environmental conditions. A consequence of considering spatial heterogeneity is that, even if antibiotics are prescribed at high dosages, the penetration of drug molecules through tissues inevitably produces antibiotic gradients, exposing bacterial populations to a range of selective pressures and generating a dynamic fitness landscape that changes in space and time. In this paper, we will use a combination of mathematical modelling and computer simulations to study the population dynamics of susceptible and resistant strains competing for resources in a network of micro-environments with varying degrees of connectivity. Our main result is that highly connected environments increase diffusion of drug molecules, enabling resistant phenotypes to colonize a larger number of spatial locations. We validated this theoretical result by culturing fluorescently labelled Escherichia coli in 3D-printed devices that allow us to control the rate of diffusion of antibiotics between neighbouring compartments and quantify the spatio-temporal distribution of resistant and susceptible bacterial cells.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Modelos Biológicos , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia
6.
Nat Ecol Evol ; 2(5): 873-881, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632354

RESUMO

Understanding the mechanisms governing innovation is a central element of evolutionary theory. Novel traits usually arise through mutations in existing genes, but trade-offs between new and ancestral protein functions are pervasive and constrain the evolution of innovation. Classical models posit that evolutionary innovation circumvents the constraints imposed by trade-offs through genetic amplifications, which provide functional redundancy. Bacterial multicopy plasmids provide a paradigmatic example of genetic amplification, yet their role in evolutionary innovation remains largely unexplored. Here, we reconstructed the evolution of a new trait encoded in a multicopy plasmid using TEM-1 ß-lactamase as a model system. Through a combination of theory and experimentation, we show that multicopy plasmids promote the coexistence of ancestral and novel traits for dozens of generations, allowing bacteria to escape the evolutionary constraints imposed by trade-offs. Our results suggest that multicopy plasmids are excellent platforms for evolutionary innovation, contributing to explain their extreme abundance in bacteria.


Assuntos
Evolução Biológica , Escherichia coli/genética , Aptidão Genética , Plasmídeos/fisiologia , beta-Lactamases/metabolismo , Bactérias/genética , Escherichia coli/fisiologia , Modelos Biológicos , Fenótipo
7.
Biol Open ; 5(3): 336-47, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26912775

RESUMO

Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

8.
PLoS Biol ; 13(4): e1002104, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25853342

RESUMO

We need to find ways of enhancing the potency of existing antibiotics, and, with this in mind, we begin with an unusual question: how low can antibiotic dosages be and yet bacterial clearance still be observed? Seeking to optimise the simultaneous use of two antibiotics, we use the minimal dose at which clearance is observed in an in vitro experimental model of antibiotic treatment as a criterion to distinguish the best and worst treatments of a bacterium, Escherichia coli. Our aim is to compare a combination treatment consisting of two synergistic antibiotics to so-called sequential treatments in which the choice of antibiotic to administer can change with each round of treatment. Using mathematical predictions validated by the E. coli treatment model, we show that clearance of the bacterium can be achieved using sequential treatments at antibiotic dosages so low that the equivalent two-drug combination treatments are ineffective. Seeking to treat the bacterium in testing circumstances, we purposefully study an E. coli strain that has a multidrug pump encoded in its chromosome that effluxes both antibiotics. Genomic amplifications that increase the number of pumps expressed per cell can cause the failure of high-dose combination treatments, yet, as we show, sequentially treated populations can still collapse. However, dual resistance due to the pump means that the antibiotics must be carefully deployed and not all sublethal sequential treatments succeed. A screen of 136 96-h-long sequential treatments determined five of these that could clear the bacterium at sublethal dosages in all replicate populations, even though none had done so by 24 h. These successes can be attributed to a collateral sensitivity whereby cross-resistance due to the duplicated pump proves insufficient to stop a reduction in E. coli growth rate following drug exchanges, a reduction that proves large enough for appropriately chosen drug switches to clear the bacterium.


Assuntos
Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética
9.
J R Soc Interface ; 11(96): 20131035, 2014 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-24812050

RESUMO

Mathematically speaking, it is self-evident that the optimal control of complex, dynamical systems with many interacting components cannot be achieved with 'non-responsive' control strategies that are constant through time. Although there are notable exceptions, this is usually how we design treatments with antimicrobial drugs when we give the same dose and the same antibiotic combination each day. Here, we use a frequency- and density-dependent pharmacogenetics mathematical model based on a standard, two-locus, two-allele representation of how bacteria resist antibiotics to probe the question of whether optimal antibiotic treatments might, in fact, be constant through time. The model describes the ecological and evolutionary dynamics of different sub-populations of the bacterium Escherichia coli that compete for a single limiting resource in a two-drug environment. We use in vitro evolutionary experiments to calibrate and test the model and show that antibiotic environments can support dynamically changing and heterogeneous population structures. We then demonstrate, theoretically and empirically, that the best treatment strategies should adapt through time and constant strategies are not optimal.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Modelos Teóricos , Antibacterianos/administração & dosagem , Escherichia coli/genética , Evolução Molecular
10.
PLoS Biol ; 11(4): e1001540, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630452

RESUMO

Conventional wisdom holds that the best way to treat infection with antibiotics is to 'hit early and hit hard'. A favoured strategy is to deploy two antibiotics that produce a stronger effect in combination than if either drug were used alone. But are such synergistic combinations necessarily optimal? We combine mathematical modelling, evolution experiments, whole genome sequencing and genetic manipulation of a resistance mechanism to demonstrate that deploying synergistic antibiotics can, in practice, be the worst strategy if bacterial clearance is not achieved after the first treatment phase. As treatment proceeds, it is only to be expected that the strength of antibiotic synergy will diminish as the frequency of drug-resistant bacteria increases. Indeed, antibiotic efficacy decays exponentially in our five-day evolution experiments. However, as the theory of competitive release predicts, drug-resistant bacteria replicate fastest when their drug-susceptible competitors are eliminated by overly-aggressive treatment. Here, synergy exerts such strong selection for resistance that an antagonism consistently emerges by day 1 and the initially most aggressive treatment produces the greatest bacterial load, a fortiori greater than if just one drug were given. Whole genome sequencing reveals that such rapid evolution is the result of the amplification of a genomic region containing four drug-resistance mechanisms, including the acrAB efflux operon. When this operon is deleted in genetically manipulated mutants and the evolution experiment repeated, antagonism fails to emerge in five days and antibiotic synergy is maintained for longer. We therefore conclude that unless super-inhibitory doses are achieved and maintained until the pathogen is successfully cleared, synergistic antibiotics can have the opposite effect to that intended by helping to increase pathogen load where, and when, the drugs are found at sub-inhibitory concentrations.


Assuntos
Antibacterianos/farmacologia , Carga Bacteriana/efeitos dos fármacos , Simulação por Computador , Farmacorresistência Bacteriana Múltipla/genética , Modelos Biológicos , Algoritmos , Infecções Bacterianas/tratamento farmacológico , Sinergismo Farmacológico , Quimioterapia Combinada , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Evolução Molecular , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Óperon , Polimorfismo de Nucleotídeo Único
11.
PLoS Biol ; 8(9)2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20856906

RESUMO

Is a group best off if everyone co-operates? Theory often considers this to be so (e.g. the "conspiracy of doves"), this understanding underpinning social and economic policy. We observe, however, that after competition between "cheat" and "co-operator" strains of yeast, population fitness is maximized under co-existence. To address whether this might just be a peculiarity of our experimental system or a result with broader applicability, we assemble, benchmark, dissect, and test a systems model. This reveals the conditions necessary to recover the unexpected result. These are 3-fold: (a) that resources are used inefficiently when they are abundant, (b) that the amount of co-operation needed cannot be accurately assessed, and (c) the population is structured, such that co-operators receive more of the resource than the cheats. Relaxing any of the assumptions can lead to population fitness being maximized when cheats are absent, which we experimentally demonstrate. These three conditions will often be relevant, and hence in order to understand the trajectory of social interactions, understanding the dynamics of the efficiency of resource utilization and accuracy of information will be necessary.


Assuntos
Comportamento Cooperativo , Enganação , Processos Grupais , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...