Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0246281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606721

RESUMO

Around 30% of global food is produced by smallholder farmers, yet they constitute the most food-insecure group. In Mexico, food self-sufficiency is declining. Rural policies in the country have stimulated the production of cash crops to the detriment of the traditional intercropping system, the milpa. Such a decline may have negative consequences for the food security of subsistence farmers. This study aimed to assess changes in nutritional self-sufficiency over the last 30 years and the role of milpa systems in food security for two communities in the highlands of Oaxaca, Mexico. The study used satellite images, censuses, and field data to estimate food production. Three cropping systems, monoculture of maize, monoculture of common bean, and the milpa were compared in terms of nutrients and vitamins produced. Furthermore, a household typology was developed for each community to contrast nutritional self-sufficiency levels between the different household types. Results showed that the milpa produced more volume of food per area compared to the other systems. The milpa also produced all the nutrients and vitamins (except for B12) required to feed at least 2 persons ha-1. Monocultures of maize lacked vitamins A, B9, B12, and C, and the common bean lacked vitamins A, B12, and C. While farmers recognized the importance of the milpa, they preferred monocultures due to the reduced labor demands of this system. Households that obtained most of their income from off-farm activities had the lowest nutritional self-sufficiency. Enhancing nutritional self-sufficiency through crop diversification has the potential to not only improve the nutrition of subsistence farmers, but also to enhance ecosystem service provision, promote biodiversity conservation and restoration, and improve resilience to climate change.


Assuntos
Produção Agrícola/métodos , Segurança Alimentar , Produtos Agrícolas , Características da Família , Abastecimento de Alimentos , Humanos , México , Modelos Estatísticos , Estado Nutricional , Imagens de Satélites
2.
Front Microbiol ; 9: 2737, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487784

RESUMO

Agricultural practices affect the bacterial community structure, but how they determine the response of the bacterial community to drought, is still largely unknown. Conventional cultivated soil, i.e., inorganic fertilization, tillage, crop residue removal and maize (Zea mays L.) monoculture, and traditional organic farmed soil "milpa," i.e., minimum tillage, rotation of maize, pumpkin (Cucurbita sp.) and beans (Phaseolus vulgaris L.) and organic fertilization were sampled. Both soils from the central highlands of Mexico were characterized and incubated aerobically at 5% field capacity (5%FC) and 100% field capacity (FC) for 45 days, while the C and N mineralization, enzyme activity and the bacterial community structure were monitored. After applying the different agricultural practices 3 years, the organic C content was 1.8-times larger in the milpa than in the conventional cultivated soil, the microbial biomass C 1.3-times, and C and N mineralization 2.0-times (mean for soil incubated at 5%FC and FC). The dehydrogenase, activity was significantly higher in the conventional cultivated soil than in the milpa soil when incubated at 5%FC, but not when incubated at FC. The relative abundance of Gemmatimonadetes was larger in the conventional cultivated soil than in the milpa soil in soil both at 5%FC and FC, while that of Bacteroidetes showed an opposite trend. The relative abundance of other groups, such as Nitrospirae and Proteobacteria, was affected by cultivation technique, but controlled by soil water content. The relative abundance of other groups, e.g., FBP, Gemmatimonadetes and Proteobacteria, was affected by water content, but the effect depended on agricultural practice. For soil incubated at FC, the xenobiotics biodegradation and metabolism related functions were higher in the milpa soil than in the conventional cultivated soil, and carbohydrate metabolism showed an opposite trend. It was found that agricultural practices and soil water content had a strong effect on soil characteristics, C and N mineralization, enzyme activity, and the bacterial community structure and its functionality. Decreases or increases in the relative abundance of bacterial groups when the soil water content decreased, i.e., from FC to 5%FC, was defined often by the cultivation technique, and the larger organic matter content in the milpa soil did not prevent large changes in the bacterial community structure when the soil was dried.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA