Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23431, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38265294

RESUMO

Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Transporte Biológico , Hipóxia , Homeostase
2.
Metabolism ; 153: 155793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295946

RESUMO

The Developmental Origins of Health and Disease hypothesis sustains that exposure to different stressors during prenatal development prepares the offspring for the challenges to be encountered after birth. We studied the gestational period as a particularly vulnerable window where different stressors can have strong implications for fetal programming of the offspring's life-long metabolic status via alterations of specific placentally expressed nutrient transporters. To study this mechanism, we used a murine prenatal stress model, human preeclampsia, early miscarriage, and healthy placental tissue samples, in addition to in vitro models of placental cells. In stressed mice, placental overexpression of L-type amino acid transporter 1 (Lat1) and subsequent global placental DNA hypermethylation was accompanied by fetal and adult hypothalamic dysregulation in global DNA methylation and gene expression as well as long-term metabolic abnormalities exclusively in female offspring. In human preeclampsia, early miscarriage, and under hypoxic conditions, placental LAT1 was significantly upregulated, leading to increased methionine uptake and global DNA hypermethylation. Remarkably, subgroups of healthy term placentas with high expression of stress-related genes presented increased levels of placental LAT1 mRNA and protein, DNA and RNA hypermethylation, increased methionine uptake capacity, one-carbon metabolic pathway disruption, higher methionine concentration in the placenta and transport to the fetus specifically in females. Since LAT1 mediates the intracellular accumulation of methionine, global DNA methylation, and one-carbon metabolism in the placenta, our findings hint at a major sex-specific global response to a variety of prenatal stressors affecting placental function, epigenetic programming, and life-long metabolic disease and provide a much-needed insight into early-life factors predisposing females/women to metabolic disorders.


Assuntos
Epigênese Genética , Desenvolvimento Fetal , Predisposição Genética para Doença , Transportador 1 de Aminoácidos Neutros Grandes , Doenças Metabólicas , Metionina , Placenta , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Aborto Espontâneo , Proteínas Adaptadoras de Transdução de Sinal , Doenças Metabólicas/genética , Metionina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia , Racemetionina , Metilação de DNA , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo
3.
Cells ; 11(12)2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35741027

RESUMO

Preeclampsia (PE) is a pregnancy-specific disorder that affects 3 to 5% of pregnancies worldwide and is one of the leading causes of maternal and fetal morbidity and mortality. Nevertheless, how these events occur remains unclear. We hypothesized that the induction of hypoxic conditions in vitro in primary human trophoblast cells would mimic several characteristics of PE found in vivo. We applied and characterized a model of primary cytotrophoblasts isolated from healthy pregnancies that were placed under different oxygen concentrations: ambient O2 (5% pCO2, 21%pO2, 24 h, termed "normoxia"), low O2 concentration (5% pCO2, 1.5% pO2, 24 h, termed "hypoxia"), or "hypoxia/reoxygenation" (H/R: 6 h intervals of normoxia and hypoxia for 24 h). Various established preeclamptic markers were assessed in this cell model and compared to placental tissues obtained from PE pregnancies. Seventeen PE markers were analyzed by qPCR, and the protein secretion of soluble fms-like tyrosine kinase 1 (sFlT-1) and the placenta growth factor (PlGF) was determined by ELISA. Thirteen of seventeen genes associated with angiogenesis, the renin-angiotensin system, oxidative stress, endoplasmic reticulum stress, and the inflammasome complex were susceptible to H/R and hypoxia, mimicking the expression pattern of PE tissue. In cell culture supernatants, the secretion of sFlT-1 was increased in hypoxia, while PlGF release was significantly reduced in H/R and hypoxia. In the supernatants of our cell models, the sFlT-1/PlGF ratio in hypoxia and H/R was higher than 38, which is a strong indicator for PE in clinical practice. These results suggest that our cellular models reflect important pathological processes occurring in PE and are therefore suitable as PE in vitro models.


Assuntos
Pré-Eclâmpsia , Biomarcadores/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Fenótipo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Front Cell Dev Biol ; 10: 820286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273963

RESUMO

Cytotrophoblasts are progenitor cells that proliferate and fuse to form the multinucleated syncytiotrophoblast layer, implicated in placental endocrine and transport functions. While membrane transporters play a critical role in the distribution of nutrients, hormones, and xenobiotics at the maternal-fetal interface, their selectivity to the syncytiotrophoblast layer is poorly characterized. We aimed to evaluate the regulation of placental transporters in response to trophoblast differentiation in vitro. Experiments were carried out in isolated primary human trophoblast cells before and after syncytialization. Gene expression of six molecular markers and thirty membrane transporters was investigated by qPCR analysis. Subsequently, functional expression was evaluated for proteins involved in the transplacental transfer of essential nutrients i.e., cholesterol (ABCA1, ABCG1), glucose (SLC2A1), leucine (SLC3A2, SLC7A5), and iron (transferrin receptor, TfR1). We identified that human chorionic gonadotropin, placental lactogen, endoglin, and cadherin-11 serve as optimal gene markers for the syncytialization process. We showed that trophoblast differentiation was associated with differential gene expression (mostly up-regulation) of several nutrient and drug transporters. Further, we revealed enhanced protein expression and activity of ABCG1, SLC3A2, SLC7A5, and TfR1 in syncytialized cells, with ABCA1 and GLUT1 displaying no change. Taken together, these results indicate that the syncytiotrophoblast has a dominant role in transporting essential nutrients cholesterol, leucine, and iron. Nonetheless, we present evidence that the cytotrophoblast cells may also be linked to transport functions that could be critical for the cell fusion processes. Our findings collectively yield new insights into the cellular functions associated with or altered by the trophoblast fusion. Importantly, defective syncytialization could lead to nutrient transfer imbalance, ultimately compromising fetal development and programming.

6.
Curr Vasc Pharmacol ; 19(6): 601-623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33902412

RESUMO

Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Doenças Fetais , Hipercolesterolemia , Doenças Cardiovasculares/epidemiologia , Diabetes Gestacional/epidemiologia , Feminino , Doenças Fetais/epidemiologia , Humanos , Hipercolesterolemia/epidemiologia , Gravidez , Medição de Risco
7.
Placenta ; 105: 50-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33548684

RESUMO

INTRODUCTION: The uptake of low- and high-density lipoproteins (LDL and HDL) through the LDL receptor (LDLR) and the scavenger receptor class B type I (SR-BI) mediates maternal to fetal cholesterol transfer in syncytiotrophoblast (STB) cells. STB cells deliver cholesterol via cholesterol efflux through the ATP-binding cassette transporters A1 (ABCA1, to ApoA-I), G1 (ABCG1, to HDL), and SR-BI (to HDL). In the human placenta, these proteins are localized in the apical (LDLR, SR-BI, ABCA1) and basal (SR-BI, ABCA1, ABCG1) membrane of STB cells. However, whether these proteins in polarized primary culture models of STB show a similar localization to those in the human placenta is currently unknown. METHODS: Primary human trophoblasts (PHT) were isolated from normal placentas and cultured in Transwells® with Matrigel to obtain a polarized STB monolayer, proteins were determined by immunofluorescence and cholesterol efflux determined to different acceptors. RESULTS: At day 5, LDLR and ABCA1 localized mainly in the apical membrane, ABCG1 in the basal membrane, and SR-BI in both. Cholesterol efflux towards the apical compartment was higher to adult and neonatal HDL compared to ApoA-I. When acceptors were added in the basal compartment, cholesterol was retained in the Matrigel. DISCUSSION: Polarized STB monolayers express LDLR, SR-BI, ABCA1 and ABCG1, and their apical/basal localization resembles the one described in human placental tissue. This study confirms the high physiological value and suitability of this model for use in functional studies. Our findings also suggest that ABCA1 and SR-BI participate in cholesterol efflux to the maternal side of the cells.


Assuntos
Colesterol/metabolismo , Placenta/metabolismo , Receptores de Lipoproteínas/metabolismo , Trofoblastos/metabolismo , Adulto , Transporte Biológico , Feminino , Humanos , Lipoproteínas/metabolismo , Gravidez
8.
Placenta ; 94: 26-33, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421531

RESUMO

During pregnancy, there is a progressive increase in the levels of maternal cholesterol, a lipid that is essential for foetal growth and development. This increase can occur in a physiological (MPH) or supraphysiological (MSPH) manner, where MSPH is associated with detrimental effects on the mother and foetus, including endothelial dysfunction, oxidative stress, and atherosclerosis. Cholesterol is transported from the maternal to the foetal circulation through the placenta by a process that encompasses two main events: cholesterol uptake and efflux. The main receptors and transporters that participate in cholesterol transport are expressed in the human placenta, and their regulation in normal and pathological pregnancies has been evaluated. However, whether elevated levels of cholesterol induce these detrimental changes and whether their expression and function changes in the MSPH condition is still under study, along with the cell types involved in placental cholesterol traffic. Moreover, aside from cholesterol levels, the composition and function of lipoproteins have recently become important to study as these factors may also contribute to the atherogenic process. There is information regarding the maternal and neonatal lipoproteins profile and their changes during pregnancy. However, there are no reports that evaluate the changes of these lipoproteins in MSPH pregnancies. The latter could be relevant considering the consequences that MSPH has on the foetal vasculature. In this review, we summarize the available information regarding cholesterol transport through the placenta and the metabolism of maternal and neonatal lipoproteins in MPH and MSPH conditions, suggesting the importance of increasing our knowledge about these conditions and the monitoring of maternal cholesterol levels during pregnancy.


Assuntos
Colesterol/metabolismo , Hipercolesterolemia/sangue , Recém-Nascido/sangue , Lipoproteínas/sangue , Placenta/metabolismo , Complicações na Gravidez/sangue , Transporte Biológico , Feminino , Humanos , Gravidez
9.
Sci Rep ; 10(1): 5264, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210256

RESUMO

Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.


Assuntos
Colesterol/metabolismo , Hipercolesterolemia/sangue , Recém-Nascido/sangue , Complicações na Gravidez/sangue , Trofoblastos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células Cultivadas , Feminino , Sangue Fetal/química , Humanos , Lipoproteínas/sangue , Troca Materno-Fetal , Pessoa de Meia-Idade , Placenta/metabolismo , Gravidez , Receptores de LDL/metabolismo , Triglicerídeos/sangue , Adulto Jovem
10.
Nutrients ; 12(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079298

RESUMO

: Gestational diabetes mellitus (GDM) associates with fetal endothelial dysfunction (ED), which occurs independently of adequate glycemic control. Scarce information exists about the impact of different GDM therapeutic schemes on maternal dyslipidemia and obesity and their contribution to the development of fetal-ED. The aim of this study was to evaluate the effect of GDM-treatments on lipid levels in nonobese (N) and obese (O) pregnant women and the effect of maternal cholesterol levels in GDM-associated ED in the umbilical vein (UV). O-GDM women treated with diet showed decreased total cholesterol (TC) and low-density lipoproteins (LDL) levels with respect to N-GDM ones. Moreover, O-GDM women treated with diet in addition to insulin showed higher TC and LDL levels than N-GDM women. The maximum relaxation to calcitonin gene-related peptide of the UV rings was lower in the N-GDM group compared to the N one, and increased maternal levels of TC were associated with even lower dilation in the N-GDM group. We conclude that GDM-treatments modulate the TC and LDL levels depending on maternal weight. Additionally, increased TC levels worsen the GDM-associated ED of UV rings. This study suggests that it could be relevant to consider a specific GDM-treatment according to weight in order to prevent fetal-ED, as well as to consider the possible effects of maternal lipids during pregnancy.


Assuntos
Diabetes Gestacional/dietoterapia , Dislipidemias/dietoterapia , Troca Materno-Fetal/fisiologia , Obesidade/dietoterapia , Veias Umbilicais/fisiopatologia , Adulto , Peso ao Nascer/fisiologia , Glicemia/análise , Índice de Massa Corporal , Peso Corporal/fisiologia , Colesterol/sangue , Colesterol/metabolismo , Estudos Transversais , Diabetes Gestacional/sangue , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Dieta com Restrição de Carboidratos , Dislipidemias/sangue , Dislipidemias/etiologia , Dislipidemias/fisiopatologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Recém-Nascido , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia , Circulação Placentária/fisiologia , Gravidez , Estudos Retrospectivos , Adulto Jovem
11.
Curr Vasc Pharmacol ; 17(1): 52-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29149816

RESUMO

Dyslipidaemia occurs in pregnancy to secure foetal development. The mother shows a physiological increase in plasma total cholesterol and Triglycerides (TG) as pregnancy progresses (i.e. maternal physiological dyslipidaemia in pregnancy). However, in some women pregnancy-associated dyslipidaemia exceeds this physiological adaptation. The consequences of this condition on the developing fetus include endothelial dysfunction of the foetoplacental vasculature and development of foetal aortic atherosclerosis. Gestational Diabetes Mellitus (GDM) associates with abnormal function of the foetoplacental vasculature due to foetal hyperglycaemia and hyperinsulinaemia, and associates with development of cardiovascular disease in adulthood. Supraphysiological dyslipidaemia is also detected in GDM pregnancies. Although there are several studies showing the alteration in the maternal and neonatal lipid profile in GDM pregnancies, there are no studies addressing the effect of dyslipidaemia in the maternal and foetal vasculature. The literature reviewed suggests that dyslipidaemia in GDM pregnancy should be an additional factor contributing to worsen GDM-associated endothelial dysfunction by altering signalling pathways involving nitric oxide bioavailability and neonatal lipoproteins.


Assuntos
Doenças da Aorta/sangue , Aterosclerose/sangue , Glicemia/metabolismo , Diabetes Gestacional/sangue , Dislipidemias/sangue , Doenças Fetais/sangue , Lipoproteínas/sangue , Circulação Placentária , Efeitos Tardios da Exposição Pré-Natal , Animais , Doenças da Aorta/diagnóstico , Doenças da Aorta/fisiopatologia , Aterosclerose/diagnóstico , Aterosclerose/fisiopatologia , Biomarcadores/sangue , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/fisiopatologia , Dislipidemias/diagnóstico , Dislipidemias/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/fisiopatologia , Humanos , Gravidez , Fatores de Risco
12.
Sci Rep ; 8(1): 7690, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769708

RESUMO

Maternal physiological or supraphysiological hypercholesterolemia (MPH, MSPH) occurs during pregnancy. MSPH is associated with foetal endothelial dysfunction and atherosclerosis. However, the potential effects of MSPH on placental microvasculature are unknown. The aim of this study was to determine whether MSPH alters endothelial function in the placental microvasculature both ex vivo in venules and arterioles from the placental villi and in vitro in primary cultures of placental microvascular endothelial cells (hPMEC). Total cholesterol < 280 mg/dL indicated MPH, and total cholesterol ≥280 mg/dL indicated MSPH. The maximal relaxation to histamine, calcitonin gene-related peptide and adenosine was reduced in MSPH venule and arteriole rings. In hPMEC from MSPH placentas, nitric oxide synthase (NOS) activity and L-arginine transport were reduced without changes in arginase activity or the protein levels of endothelial NOS (eNOS), human cationic amino acid 1 (hCAT-1), hCAT-2A/B or arginase II compared with hPMEC from MPH placentas. In addition, it was shown that adenosine acts as a vasodilator of the placental microvasculature and that NOS is active in hPMEC. We conclude that MSPH alters placental microvascular endothelial function via a NOS/L-arginine imbalance. This work also reinforces the concept that placental endothelial cells from the macro- and microvasculature respond differentially to the same pathological condition.


Assuntos
Endotélio Vascular/patologia , Hipercolesterolemia/complicações , Microvasos/patologia , Placenta/patologia , Doenças Vasculares/etiologia , Adulto , Arginase/metabolismo , Arginina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Endotélio Vascular/metabolismo , Feminino , Humanos , Hipercolesterolemia/fisiopatologia , Microvasos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Placenta/metabolismo , Gravidez , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
13.
J Diabetes Res ; 2017: 5947859, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104874

RESUMO

Insulin resistance is characteristic of pregnancies where the mother shows metabolic alterations, such as preeclampsia (PE) and gestational diabetes mellitus (GDM), or abnormal maternal conditions such as pregestational maternal obesity (PGMO). Insulin signalling includes activation of insulin receptor substrates 1 and 2 (IRS1/2) as well as Src homology 2 domain-containing transforming protein 1, leading to activation of 44 and 42 kDa mitogen-activated protein kinases and protein kinase B/Akt (Akt) signalling cascades in the human foetoplacental vasculature. PE, GDM, and PGMO are abnormal conditions coursing with reduced insulin signalling, but the possibility of the involvement of similar cell signalling mechanisms is not addressed. This review aimed to determine whether reduced insulin signalling in PE, GDM, and PGMO shares a common mechanism in the human foetoplacental vasculature. Insulin resistance in these pathological conditions results from reduced Akt activation mainly due to inhibition of IRS1/2, likely due to the increased activity of the mammalian target of rapamycin (mTOR) resulting from lower activity of adenosine monophosphate kinase. Thus, a defective signalling via Akt/mTOR in response to insulin is a central and common mechanism of insulin resistance in these diseases of pregnancy. In this review, we summarise the cell signalling mechanisms behind the insulin resistance state in PE, GDM, and PGMO focused in the Akt/mTOR signalling pathway in the human foetoplacental endothelium.


Assuntos
Diabetes Gestacional/metabolismo , Resistência à Insulina/fisiologia , Pré-Eclâmpsia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Feminino , Humanos , Gravidez , Transdução de Sinais/fisiologia
14.
Mol Aspects Med ; 55: 26-44, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28153452

RESUMO

Adenosine as well as agonists and antagonists for the four adenosine receptor subtypes (A1R, A2AR, A2BR and A3R) play a role in several key physiological and pathophysiological processes, including the regulation of vascular tone, thrombosis, immune response, inflammation, and angiogenesis. This review focuses on the adenosine-mediated regulation of lipid availability in the cell and in the systemic circulation as well in humans and animal models. Therefore, adenosine, mainly by acting on A1R, inhibits lipolysis activity, leading to reduction of the circulating fatty acid levels. This nucleoside can also participate in the early development of atherosclerosis by inhibiting the formation of foam cells via stimulation of cholesterol efflux through A2AR expressed on macrophages and reduction of the inflammatory process by activating A2AR and A2BR. Adenosine also appears to modulate intracellular cholesterol availability in Niemann-Pick type C1 disease and Alzheimer disease via A2AR and A3, respectively. Remarkably, the role of adenosine receptors in the regulation of plasma total cholesterol and triglyceride levels has been studied in animal models. Thus, an anti-atherogenic role for A2BR as well as a pro-atherogenic role of A2AR and A1 have been proposed; A3R has not been shown to participate in the control of lipid levels or the development of atherosclerosis. Surprisingly, and despite the role of A2A in the inhibition of foam cell formation among isolated cells, this receptor appears to be pro-atherogenic in mice. Remarkably, the role of adenosine receptors in human dyslipidaemia and atherosclerosis must to be elucidated. Additionally, it has been reported that increased lipid levels impair the effects of adenosine/adenosine receptors in controlling vascular tone, and we speculate on the possibility that this impairment could be due to alterations in the composition of the membrane microdomains where the adenosine receptors are located. Finally, a possible role for adenosine/adenosine receptors in the phenomena of dyslipidaemia in pregnancy has been proposed.


Assuntos
Adenosina/metabolismo , Colesterol/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/genética , Transporte Biológico/genética , Humanos , Metabolismo dos Lipídeos , Receptores Purinérgicos P1/genética
15.
Front Physiol ; 7: 119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065887

RESUMO

Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies.

16.
Curr Vasc Pharmacol ; 14(3): 237-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26899560

RESUMO

Preeclampsia (PE), gestational diabetes mellitus (GDM), and maternal supraphysiological hypercholesterolaemia (MSPH) are pregnancy-related conditions that cause metabolic disruptions leading to alterations of the mother, fetus and neonate health. These syndromes result in fetoplacental vascular dysfunction, where nitric oxide (NO) plays a crucial role. PE characterizes by abnormal increase in the placental blood pressure and a negative correlation between NO level and fetal weight, suggesting that increased NO level and oxidative stress could be involved. GDM courses with macrosomia along with altered function of the fetal cardiovascular system and fetoplacental vasculature. Even when NO synthesis in the fetoplacental vasculature is increased, NO bioavailability is reduced due to the higher oxidative stress seen in this disease. In MSPH, there is an early development of atherosclerotic lesions in fetal and newborn arteries, altered function of the fetoplacental vasculature, and higher markers of oxidative stress in fetal blood and placenta, thus, vascular alterations related with NO metabolism occur as a consequence of this syndrome. Potential mechanisms of altered NO synthesis and bioavailability result from transcriptional and post-translational NO synthases (NOS) modulation, including phosphorylation/dephosphorylation cycles, coupling/uncoupling of NOS, tetrahydrobiopterin bioavailability, calcium/calmodulin-NOS and caveolin-1-NOS interaction. Additionally, oxidative stress also plays a role in the reduced NO bioavailability. This review summarizes the available information regarding lower NO bioavailability in these pregnancy pathologies. A common NO-dependent mechanism in PE, GDM and MSPH contributing to fetoplacental endothelial dysfunction is described.


Assuntos
Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Complicações na Gravidez/metabolismo , Doenças Vasculares/metabolismo , Animais , Feminino , Humanos , Estresse Oxidativo/fisiologia , Placenta/metabolismo , Gravidez
17.
Biochim Biophys Acta ; 1862(4): 536-544, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26826019

RESUMO

Maternal physiological hypercholesterolemia (MPH) allows a proper foetal development; however, maternal supraphysiological hypercholesterolemia (MSPH) associates with foetal endothelial dysfunction and early development of atherosclerosis. MSPH courses with reduced endothelium-dependent dilation of the human umbilical vein due to reduced endothelial nitric oxide synthase activity compared with MPH. Whether MSPH modifies the availability of the nitric oxide synthase cofactor tetrahydrobiopterin is unknown. We investigated whether MSPH-associated lower umbilical vein vascular reactivity results from reduced bioavailability of tetrahydrobiopterin. Total cholesterol <7.2mmol/L was considered as maternal physiological hypercholesterolemia (n=72 women) and ≥7.2mmol/L as MSPH (n=35 women). Umbilical veins rings were used for vascular reactivity assays (wire myography), and primary cultures of human umbilical vein endothelial cells (HUVECs) to measure nitric oxide synthase, GTP cyclohydrolase 1, and dihydrofolate reductase expression and activity, as well as tetrahydrobiopterin content. MSPH reduced the umbilical vein rings relaxation caused by calcitonine gene-related peptide, a phenomenon partially improved by incubation with sepiapterin. HUVECs from MSPH showed lower nitric oxide synthase activity (l-citrulline synthesis from l-arginine) without changes in its protein abundance, as well as reduced tetrahydrobiopterin level compared with MPH, a phenomenon reversed by incubation with sepiapterin. Expression and activity of GTP cyclohydrolase 1 was lower in MSPH, without changes in dihydrofolate reductase expression. MSPH is a pathophysiological condition reducing human umbilical vein reactivity due to lower bioavailability of tetrahydrobiopterin leading to lower NOS activity in the human umbilical vein endothelium.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipercolesterolemia/metabolismo , Complicações na Gravidez/metabolismo , Pterinas/farmacologia , Veias Umbilicais/metabolismo , Adolescente , Adulto , Feminino , GTP Cicloidrolase/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hipercolesterolemia/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Gravidez , Complicações na Gravidez/patologia , Veias Umbilicais/patologia
18.
Pharmacol Res ; 103: 318-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26607864

RESUMO

The alpha2-adrenergic receptor agonist Dexmedetomidine (Dex) is a sedative medication used by anesthesiologists. Dex protects the heart against ischemia-reperfusion (IR) and can also act as a preconditioning mimetic. The mechanisms involved in Dex-dependent cardiac preconditioning, and whether this action occurs directly or indirectly on cardiomyocytes, still remain unclear. The endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway and endothelial cells are known to play key roles in cardioprotection against IR injury. Therefore, the aims of this work were to evaluate whether the eNOS/NO pathway mediates the pharmacological cardiac effect of Dex, and whether endothelial cells are required in this cardioprotective action. Isolated adult rat hearts were treated with Dex (10nM) for 25min and the dimerization of eNOS and production of NO were measured. Hearts were then subjected to global IR (30/120min) and the role of the eNOS/NO pathway was evaluated. Dex promoted the activation of eNOS and production of NO. Dex reduced the infarct size and improved the left ventricle function recovery, but this effect was reversed when Dex was co-administered with inhibitors of the eNOS/NO/PKG pathway. In addition, Dex was unable to reduce cell death in isolated adult rat cardiomyocytes subjected to simulated IR. Cardiomyocyte death was attenuated by co-culturing them with endothelial cells pre-treated with Dex. In summary, our results show that Dex triggers cardiac protection by activating the eNOS/NO signaling pathway. This pharmacological effect of Dex requires its interaction with the endothelium.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Cardiotônicos/farmacologia , Dexmedetomidina/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Animais , Cardiotônicos/uso terapêutico , Células Cultivadas , Técnicas de Cocultura , Dexmedetomidina/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley
19.
Oxid Med Cell Longev ; 2015: 5346327, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697136

RESUMO

Maternal physiological hypercholesterolemia occurs during pregnancy, ensuring normal fetal development. In some cases, the maternal plasma cholesterol level increases to above this physiological range, leading to maternal supraphysiological hypercholesterolemia (MSPH). This condition results in endothelial dysfunction and atherosclerosis in the fetal and placental vasculature. The fetal and placental endothelial dysfunction is related to alterations in the L-arginine/nitric oxide (NO) pathway and the arginase/urea pathway and results in reduced NO production. The level of tetrahydrobiopterin (BH4), a cofactor for endothelial NO synthase (eNOS), is reduced in nonpregnant women who have hypercholesterolemia, which favors the generation of the superoxide anion rather than NO (from eNOS), causing endothelial dysfunction. However, it is unknown whether MSPH is associated with changes in the level or metabolism of BH4; as a result, eNOS function is not well understood. This review summarizes the available information on the potential link between MSPH and BH4 in causing human fetoplacental vascular endothelial dysfunction, which may be crucial for understanding the deleterious effects of MSPH on fetal growth and development.


Assuntos
Biopterinas/análogos & derivados , Endotélio Vascular/metabolismo , Hipercolesterolemia/patologia , Animais , Arginina/metabolismo , Biopterinas/metabolismo , Boroidretos/metabolismo , Colesterol/sangue , Feminino , Humanos , Hipercolesterolemia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez
20.
FASEB J ; 29(1): 37-49, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351985

RESUMO

Reduced adenosine uptake via human equilibrative nucleoside transporter 1 (hENT1) in human umbilical vein endothelial cells (HUVECs) from gestational diabetes mellitus (GDM) is reversed by insulin by restoring hENT1 expression. Insulin receptors A (IR-A) and B (IR-B) are expressed in HUVECs, and GDM results in higher IR-A mRNA expression vs. cells from normal pregnancies. We studied whether the reversal of GDM effects on transport by insulin depends on restoration of IR-A expression. We specifically measured hENT1 expression [mRNA, protein abundance, SLC29A1 (for hENT1) promoter activity] and activity (adenosine transport kinetics) and the role of IR-A/IR-B expression and signaling [total and phosphorylated 42 and 44 kDa mitogen-activated protein kinases (p44/42(mapk)) and Akt] in IR-A, IR-B, and IR-A/B knockdown HUVECs from normal (n = 33) or GDM (n = 33) pregnancies. GDM increases IR-A/IR-B mRNA expression (1.8-fold) and p44/42(mapk):Akt activity (2.7-fold) ratios. Insulin reversed GDM-reduced hENT1 expression and maximal transport capacity (V(max)/K(m)), and GDM-increased IR-A/IR-B mRNA expression and p44/42(mapk):Akt activity ratios to values in normal pregnancies. Insulin's effect was abolished in IR-A or IR-A/B knockdown cells. Thus, insulin requires normal IR-A expression and p44/42(mapk)/Akt signaling to restore GDM-reduced hENT1 expression and activity in HUVECs. This could be a protective mechanism for the placental macrovascular endothelial dysfunction seen in GDM.


Assuntos
Adenosina/metabolismo , Antígenos CD/metabolismo , Diabetes Gestacional/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Adolescente , Adulto , Antígenos CD/genética , Transporte Biológico Ativo , Estudos de Casos e Controles , Diabetes Gestacional/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Recém-Nascido , Cinética , Sistema de Sinalização das MAP Quinases , Masculino , Gravidez , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Transdução de Sinais , Veias Umbilicais/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...