Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012399

RESUMO

The circadian clock generates 24 h rhythms in behavioural, cellular and molecular processes. Malfunctions of the clock are associated with enhanced susceptibility to cancer, worse treatment response and poor prognosis. Clock-controlled genes are involved in cellular processes associated with tumour development and progression including metabolism of drugs and the cell cycle. Cynara cardunculus, a plant of the Asteraceae family, has been reported to have antiproliferative effects on breast cancer cells. Here, we used the human colorectal cancer (CRC) cell line HCT116 and its knockout variants for different core-clock genes (BMAL1, PER2, NR1D1), to investigate the treatment effect of C. cardunculus lipophilic leaf extract under different clock scenarios. Our results show a direct effect of C. cardunculus on the circadian phenotype of the cells, as indicated by alterations in the phase, amplitude, and period length of core-clock gene oscillations. Furthermore, our data indicate a role for the circadian clock in sensitivity to C. cardunculus treatment. In particular, the treatment inhibited proliferation and induced cytotoxicity and apoptosis in a clock knockout-specific manner, in CRC cells. These results point to a potential effect of C. cardunculus lipophilic leaf extracts as a modulator of the circadian clock, in addition to its anti-proliferative properties.


Assuntos
Relógios Circadianos , Neoplasias Colorretais , Cynara , Apoptose , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos
2.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443305

RESUMO

Mounting evidence points to a role of the circadian clock in the temporal regulation of post-transcriptional processes in mammals, including alternative splicing (AS). In this study, we carried out a computational analysis of circadian and ultradian rhythms on the transcriptome level to characterise the landscape of rhythmic AS events in published datasets covering 76 tissues from mouse and olive baboon. Splicing-related genes with 24-h rhythmic expression patterns showed a bimodal distribution of peak phases across tissues and species, indicating that they might be controlled by the circadian clock. On the output level, we identified putative oscillating AS events in murine microarray data and pairs of differentially rhythmic splice isoforms of the same gene in baboon RNA-seq data that peaked at opposing times of the day and included oncogenes and tumour suppressors. We further explored these findings using a new circadian RNA-seq dataset of human colorectal cancer cell lines. Rhythmic isoform expression patterns differed between the primary tumour and the metastatic cell line and were associated with cancer-related biological processes, indicating a functional role of rhythmic AS that might be implicated in tumour progression. Our data shows that rhythmic AS events are widespread across mammalian tissues and might contribute to a temporal diversification of the proteome.


Assuntos
Processamento Alternativo/genética , Splicing de RNA/genética , Ritmo Ultradiano/genética , Sítios de Ligação , Linhagem Celular Tumoral , Relógios Circadianos/genética , Humanos , Transcriptoma/genética
3.
Cancers (Basel) ; 11(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311174

RESUMO

Cancer cells interrelate with the bordering host microenvironment that encompasses the extracellular matrix and a nontumour cellular component comprising fibroblasts and immune-competent cells. The tumour microenvironment modulates cancer onset and progression, but the molecular factors managing this interaction are not fully understood. Malignant transformation of a benign tumour is among the first crucial events in colorectal carcinogenesis. The role of tumour stroma fibroblasts is well-described in cancer, but less well-characterized in benign tumours. In the current work we utilized fibroblasts isolated from tubulovillous adenoma, which has high risk for malignant transformation, to study the interaction between benign tumour stroma and the circadian clock machinery. We explored the role of the biological clock in this interplay taking advantage of an experimental model, represented by the co-culture of colon cancer cells with normal fibroblasts or tumour-associated fibroblasts, isolated from human colorectal tumour specimens. When co-cultured with tumour-associated fibroblasts, colon cancer cells showed alterations in their circadian and metabolic parameters, with decreased apoptosis, increased colon cancer cell viability, and increased resistance to chemotherapeutic agents. In conclusion, the interactions among colon cancer cells and tumour-associated fibroblasts affect the molecular clockwork and seem to aggravate malignant cell phenotypes, suggesting a detrimental effect of this interplay on cancer dynamics.

4.
EBioMedicine ; 33: 105-121, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30005951

RESUMO

An endogenous molecular clockwork drives various cellular pathways including metabolism and the cell cycle. Its dysregulation is able to prompt pathological phenotypes including cancer. Besides dramatic metabolic alterations, cancer cells display severe changes in the clock phenotype with likely consequences in tumor progression and treatment response. In this study, we use a comprehensive systems-driven approach to investigate the effect of clock disruption on metabolic pathways and its impact on drug response in a cellular model of colon cancer progression. We identified distinctive time-related transcriptomic and metabolic features of a primary tumor and its metastatic counterpart. A mapping of the expression data to a comprehensive genome-scale reconstruction of human metabolism allowed for the in-depth functional characterization of 24 h-oscillating transcripts and pointed to a clock-driven metabolic reprogramming in tumorigenesis. In particular, we identified a set of five clock-regulated glycolysis genes, ALDH3A2, ALDOC, HKDC1, PCK2, and PDHB with differential temporal expression patterns. These findings were validated in organoids and in primary fibroblasts isolated from normal colon and colon adenocarcinoma from the same patient. We further identified a reciprocal connection of HKDC1 to the clock in the primary tumor, which is lost in the metastatic cells. Interestingly, a disruption of the core-clock gene BMAL1 impacts on HKDC1 and leads to a time-dependent rewiring of metabolism, namely an increase in glycolytic activity, as well as changes in treatment response. This work provides novel evidence regarding the complex interplay between the circadian clock and metabolic alterations in carcinogenesis and identifies new connections between both systems with pivotal roles in cancer progression and response to therapy.


Assuntos
Antineoplásicos/farmacologia , Relógios Circadianos , Neoplasias Colorretais/genética , Redes Reguladoras de Genes , Hexoquinase/genética , Fatores de Transcrição ARNTL/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Progressão da Doença , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células Hep G2 , Humanos , Hidroxibenzoatos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Oxaliplatina
5.
EBioMedicine ; 33: 68-81, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29936137

RESUMO

Accumulating evidence points to a significant role of the circadian clock in the regulation of splicing in various organisms, including mammals. Both dysregulated circadian rhythms and aberrant pre-mRNA splicing are frequently implicated in human disease, in particular in cancer. To investigate the role of the circadian clock in the regulation of splicing in a cancer progression context at the systems-level, we conducted a genome-wide analysis and compared the rhythmic transcriptional profiles of colon carcinoma cell lines SW480 and SW620, derived from primary and metastatic sites of the same patient, respectively. We identified spliceosome components and splicing factors with cell-specific circadian expression patterns including SRSF1, HNRNPLL, ESRP1, and RBM 8A, as well as altered alternative splicing events and circadian alternative splicing patterns of output genes (e.g., VEGFA, NCAM1, FGFR2, CD44) in our cellular model. Our data reveals a remarkable interplay between the circadian clock and pre-mRNA splicing with putative consequences in tumor progression and metastasis.


Assuntos
Processamento Alternativo , Relógios Circadianos , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linhagem Celular Tumoral , Ritmo Circadiano , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica
6.
PLoS Biol ; 15(12): e2002940, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216180

RESUMO

The mammalian circadian clock and the cell cycle are two major biological oscillators whose coupling influences cell fate decisions. In the present study, we use a model-driven experimental approach to investigate the interplay between clock and cell cycle components and the dysregulatory effects of RAS on this coupled system. In particular, we focus on the Ink4a/Arf locus as one of the bridging clock-cell cycle elements. Upon perturbations by the rat sarcoma viral oncogene (RAS), differential effects on the circadian phenotype were observed in wild-type and Ink4a/Arf knock-out mouse embryonic fibroblasts (MEFs), which could be reproduced by our modelling simulations and correlated with opposing cell cycle fate decisions. Interestingly, the observed changes can be attributed to in silico phase shifts in the expression of core-clock elements. A genome-wide analysis revealed a set of differentially expressed genes that form an intricate network with the circadian system with enriched pathways involved in opposing cell cycle phenotypes. In addition, a machine learning approach complemented by cell cycle analysis classified the observed cell cycle fate decisions as dependent on Ink4a/Arf and the oncogene RAS and highlighted a putative fine-tuning role of Bmal1 as an elicitor of such processes, ultimately resulting in increased cell proliferation in the Ink4a/Arf knock-out scenario. This indicates that the dysregulation of the core-clock might work as an enhancer of RAS-mediated regulation of the cell cycle. Our combined in silico and in vitro approach highlights the important role of the circadian clock as an Ink4a/Arf-dependent modulator of oncogene-induced cell fate decisions, reinforcing its function as a tumour-suppressor and the close interplay between the clock and the cell cycle network.


Assuntos
Relógios Circadianos/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Loci Gênicos/fisiologia , Proteínas ras/fisiologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Proteínas ras/metabolismo
7.
Data Brief ; 9: 433-437, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27699197

RESUMO

We show here if under physiologically relevant conditions resveratrol (RSV) remains stable or not. We further show under which circumstances various oxidation products of RSV such as ROS can be produced. For example, in addition to the widely known effect of bicarbonate ions, high pH values promote the decay of RSV. Moreover, we analyse the impact of reduction of the oxygen partial pressure on the pH-dependent oxidation of RSV. For further interpretation and discussion of these focused data in a broader context we refer to the article "Hormetic shifting of redox environment by pro-oxidative resveratrol protects cells against stress" (Plauth et al., in press) [1].

8.
Free Radic Biol Med ; 99: 608-622, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515816

RESUMO

Resveratrol has gained tremendous interest owing to multiple reported health-beneficial effects. However, the underlying key mechanism of action of this natural product remained largely controversial. Here, we demonstrate that under physiologically relevant conditions major biological effects of resveratrol can be attributed to its generation of oxidation products such as reactive oxygen species (ROS). At low nontoxic concentrations (in general <50µM), treatment with resveratrol increased viability in a set of representative cell models, whereas application of quenchers of ROS completely truncated these beneficial effects. Notably, resveratrol treatment led to mild, Nrf2-specific gene expression reprogramming. For example, in primary epidermal keratinocytes derived from human skin this coordinated process resulted in a 1.3-fold increase of endogenously generated glutathione (GSH) and subsequently in a quantitative reduction of the cellular redox environment by 2.61mVmmol GSH per g protein. After induction of oxidative stress by using 0.78% (v/v) ethanol, endogenous generation of ROS was consequently reduced by 24% in resveratrol pre-treated cells. In contrast to the common perception that resveratrol acts mainly as a chemical antioxidant or as a target protein-specific ligand, we propose that the cellular response to resveratrol treatment is essentially based on oxidative triggering. In physiological microenvironments this molecular training can lead to hormetic shifting of cellular defense towards a more reductive state to improve physiological resilience to oxidative stress.


Assuntos
Fibroblastos/efeitos dos fármacos , Hormese , Queratinócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/farmacologia , Antioxidantes/farmacologia , Etanol/farmacologia , Fibroblastos/citologia , Regulação da Expressão Gênica , Glutationa/metabolismo , Células HT29 , Células HeLa , Células Hep G2 , Humanos , Queratinócitos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo , Cultura Primária de Células , Resveratrol
9.
Biochim Biophys Acta ; 1857(8): 1344-1351, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27060253

RESUMO

In the past few years mounting evidences have highlighted the tight correlation between circadian rhythms and metabolism. Although at the organismal level the central timekeeper is constituted by the hypothalamic suprachiasmatic nuclei practically all the peripheral tissues are equipped with autonomous oscillators made up by common molecular clockworks represented by circuits of gene expression that are organized in interconnected positive and negative feed-back loops. In this study we exploited a well-established in vitro synchronization model to investigate specifically the linkage between clock gene expression and the mitochondrial oxidative phosphorylation (OxPhos). Here we show that synchronized cells exhibit an autonomous ultradian mitochondrial respiratory activity which is abrogated by silencing the master clock gene ARNTL/BMAL1. Surprisingly, pharmacological inhibition of the mitochondrial OxPhos system resulted in dramatic deregulation of the rhythmic clock-gene expression and a similar result was attained with mtDNA depleted cells (Rho0). Our findings provide a novel level of complexity in the interlocked feedback loop controlling the interplay between cellular bioenergetics and the molecular clockwork. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Retroalimentação Fisiológica , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/metabolismo , Antimicina A/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células Hep G2 , Humanos , Lentivirus/genética , Luciferases/genética , Luciferases/metabolismo , Mitocôndrias/efeitos dos fármacos , Oligomicinas/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Rotenona/farmacologia , Transdução de Sinais
10.
Biochim Biophys Acta ; 1863(4): 596-606, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732296

RESUMO

Physiology of living beings show circadian rhythms entrained by a central timekeeper present in the hypothalamic suprachiasmatic nuclei. Nevertheless, virtually all peripheral tissues hold autonomous molecular oscillators constituted essentially by circuits of gene expression that are organized in negative and positive feed-back loops. Accumulating evidence reveals that cell metabolism is rhythmically controlled by cell-intrinsic molecular clocks and the specific pathways involved are being elucidated. Here, we show that in vitro-synchronized cultured cells exhibit BMAL1-dependent oscillation in mitochondrial respiratory activity, which occurs irrespective of the cell type tested, the protocol of synchronization used and the carbon source in the medium. We demonstrate that the rhythmic respiratory activity is associated to oscillation in cellular NAD content and clock-genes-dependent expression of NAMPT and Sirtuins 1/3 and is traceable back to the reversible acetylation of a single subunit of the mitochondrial respiratory chain Complex I. Our findings provide evidence for a new interlocked transcriptional-enzymatic feedback loop controlling the molecular interplay between cellular bioenergetics and the molecular clockwork.


Assuntos
Acetiltransferases/metabolismo , Proteínas CLOCK/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Processamento de Proteína Pós-Traducional , Acetilação , Células HEK293 , Células Hep G2 , Humanos , Periodicidade , Fatores de Tempo
11.
Comput Struct Biotechnol J ; 13: 417-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26288701

RESUMO

The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock. In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases.

12.
PLoS One ; 10(5): e0126283, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945798

RESUMO

By regulating the timing of cellular processes, the circadian clock provides a way to adapt physiology and behaviour to the geophysical time. In mammals, a light-entrainable master clock located in the suprachiasmatic nucleus (SCN) controls peripheral clocks that are present in virtually every body cell. Defective circadian timing is associated with several pathologies such as cancer and metabolic and sleep disorders. To better understand the circadian regulation of cellular processes, we developed a bioinformatics pipeline encompassing the analysis of high-throughput data sets and the exploitation of published knowledge by text-mining. We identified 118 novel potential clock-regulated genes and integrated them into an existing high-quality circadian network, generating the to-date most comprehensive network of circadian regulated genes (NCRG). To validate particular elements in our network, we assessed publicly available ChIP-seq data for BMAL1, REV-ERBα/ß and RORα/γ proteins and found strong evidence for circadian regulation of Elavl1, Nme1, Dhx6, Med1 and Rbbp7 all of which are involved in the regulation of tumourigenesis. Furthermore, we identified Ncl and Ddx6, as targets of RORγ and REV-ERBα, ß, respectively. Most interestingly, these genes were also reported to be involved in miRNA regulation; in particular, NCL regulates several miRNAs, all involved in cancer aggressiveness. Thus, NCL represents a novel potential link via which the circadian clock, and specifically RORγ, regulates the expression of miRNAs, with particular consequences in breast cancer progression. Our findings bring us one step forward towards a mechanistic understanding of mammalian circadian regulation, and provide further evidence of the influence of circadian deregulation in cancer.


Assuntos
Relógios Circadianos/genética , Redes Reguladoras de Genes , Animais , Relógios Circadianos/fisiologia , Biologia Computacional/métodos , Mineração de Dados , Ontologia Genética , Humanos , Mamíferos/genética , Mamíferos/fisiologia , Anotação de Sequência Molecular , Neoplasias/genética , Neoplasias/fisiopatologia , Núcleo Supraquiasmático/fisiologia
13.
J Nat Prod ; 78(5): 1160-4, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25938459

RESUMO

Amorfrutins are isoprenoid-substituted benzoic acid derivatives, which were found in Amorpha fruticosa L. (bastard indigo) and in Glycyrrhiza foetida Desf. (licorice). Recently, amorfrutins were shown to be selective activators of the nuclear receptor PPARγ. Here, we investigated the effects and PPARγ-based mechanisms of reducing inflammation in colon cells by treatment with amorfrutins. In TNF-α-stimulated colon cells amorfrutin A (1) reduced significantly the expression and secretion of several inflammation mediators, in part due to interaction with PPARγ. These results support the hypothesis that amorfrutins may have the potential to treat inflammation disorders such as chronic inflammatory bowel diseases.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Fabaceae/química , PPAR gama/agonistas , Salicilatos/isolamento & purificação , Salicilatos/farmacologia , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Anti-Inflamatórios/química , Glycyrrhiza/metabolismo , Estrutura Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , Salicilatos/química , Estilbenos/química , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...