Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 22-34, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583207

RESUMO

The generation of hydrogen as a clean energy carrier by photocatalysis, as a zero-emission technology, is of significant scientific and industrial interest. However, the main drawback of photocatalytic hydrogen generation from water splitting is its low efficiency compared to traditional chemical or electrochemical methods. Zinc oxide (ZnO) with the wurtzite phase is one of the most investigated photocatalysts for hydrogen production, but its activity still needs to be improved. In this study, an oxygen-deficient high-pressure ZnO rocksalt phase is stabilized using a high-pressure torsion (HPT) method, and the product is used for photocatalysis under ambient pressure. The simultaneous introduction of oxygen vacancies and the rocksalt phase effectively improved photocatalytic hydrogen production to levels comparable to benchmark P25 TiO2, due to improving light absorbance and providing active sites for photocatalysis without any negative effect on electron-hole recombination. These results confirm the high potential of high-pressure phases for photocatalytic hydrogen generation.

2.
Materials (Basel) ; 16(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770088

RESUMO

Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.

3.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233927

RESUMO

The upgrading of plant-based oils to liquid transportation fuels through the hydrotreating process has become the most attractive and promising technical pathway for producing biofuels. This work produced bio-jet fuel (C9-C14 hydrocarbons) from palm olein oil through hydrocracking over varied metal phosphide supported on porous biochar catalysts. Relative metal phosphide catalysts were investigated for the highest performance for bio-jet fuel production. The palm oil's fiber-derived porous biochar (PFC) revealed its high potential as a catalyst supporter. A series of PFC-supported cobalt, nickel, iron, and molybdenum metal phosphides (Co-P/PFC, Ni-P/PFC, Fe-P/PFC, and Mo-P/PFC) catalysts with a metal-loading content of 10 wt.% were synthesized by wet-impregnation and a reduction process. The performance of the prepared catalysts was tested for palm oil hydrocracking in a trickle-bed continuous flow reactor under fixed conditions; a reaction temperature of 420 °C, LHSV of 1 h-1, and H2 pressure of 50 bar was found. The Fe-P/PFC catalyst represented the highest hydrocracking performance based on 100% conversion with 94.6% bio-jet selectivity due to its higher active phase dispersion along with high acidity, which is higher than other synthesized catalysts. Moreover, the Fe-P/PFC catalyst was found to be the most selective to C9 (35.4%) and C10 (37.6%) hydrocarbons.

4.
RSC Adv ; 12(40): 26051-26069, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199599

RESUMO

Palm oil conversion into green diesel by catalytic deoxygenation (DO) is one of the distinctive research topics in biorefinery towards a bio-circular-green economic model to reduce the greenhouse gas emissions. In this study, palm fiber waste was explored as an alternative precursor for the preparation of activated biochar as a support material. A new series of nickel phosphide (Ni-P) and iron phosphide (Fe-P) catalysts supported on palm fiber activated biochar (PFAC) was synthesized by wetness impregnation, and extensive characterization was performed by several techniques to understand the characteristics of the supported metal phosphide catalysts prior to palm oil deoxygenation for producing of green diesel (C15-C18 hydrocarbons). The PFAC support exhibited suitable physicochemical properties for catalyst preparation, such as high carbon content, and high porosity (S BET of 1039.64 m2 g-1 with V T of 0.572 cm3 g-1). The high porosity of the catalyst support (PFAC) significantly promotes the metal phosphide nanoparticle dispersion. The DO of palm oil was tested in a trickle bed down flow reactor under hydrogen atmosphere. The outstanding catalytic performance of supported Ni-P and Fe-P catalysts provided an impressive liquid hydrocarbon yield between 63.37 and 79.65% with the highest green diesel selectivity of 62.64%. Decarbonylation (DCO) and decarboxylation (DCO2) are the main pathways for the relative phosphide catalysts as presented by the high number of C n-1 atoms (C15 and C17 hydrocarbons). In addition, metal phosphide/PFAC catalysts could achieve great potential application as a promising alternative catalyst for biofuel production via deoxygenation for large-scale operation owing to their excellent catalytic activity, simple preparation, and utilization of sustainable resources.

5.
Dalton Trans ; 48(25): 9284-9290, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31162517

RESUMO

Tantalate semiconductors are potential photocatalysts for hydrogen generation via photocatalytic water splitting reaction because the conduction band of tantalates is composed of the tantalum 5d orbital, which is located at a more negative potential than that of the H+/H2 half reaction, i.e., 0.0 V vs. NHE. Bi3TaO7 is a stable tantalate under acidic or alkaline conditions, with a band gap suitable for visible light absorption. However, the photocatalytic properties of Bi3TaO7 are only reported based on the dye degradation reactions, probably due to the fast electron/hole recombination losses. 2D crystal-like nanosheets with a thickness of a few nanometers show unique features such as high carrier mobility, the quantum Hall effect, high specific surface area, and excellent electrical/thermal conductivity. 2D structures can also enhance the photocatalytic properties because photo-generated charge carriers in nanosheets are less prone to fast recombinations as compared to their bulk counterparts. In this study, nanosheets of Bi3TaO7 are produced by a liquid exfoliation method and the photocatalytic hydrogen generation reaction is investigated for both the as-synthesized Bi3TaO7 nanoparticles and Bi3TaO7 nanosheets.

6.
Mater Sci Eng C Mater Biol Appl ; 97: 78-83, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678968

RESUMO

Ionic liquids (ILs) containing imidazolium cations have a number of useful properties, such as high permeability to cells, high antimicrobial activity, and good biocompatibility. With the aid of ILs, transdermal delivery, solubilization of poorly soluble drugs were developed and therapeutic effects were improved. In this work, 1­butyl­3­methylimidazolium hexafluorophosphate-incorporated, chitosan-modified, submicron-sized poly(dl­lactide­co­glycolide) (PLGA) nanoparticles (NPs) were prepared using the emulsion solvent diffusion method for the treatment of biofilm infections. Prepared IL-incorporated PLGA NPs using surfactants such as Tween-80 and poloxamer-188 showed a high antibacterial activity to the bacterial cells under the biofilm. Additionally, antibacterial mechanism of IL-incorporated PLGA NPs was revealed by annular dark field scanning transmission electron microscopy combined a simple sample pretreatment method. We established a drug delivery system using IL-incorporated PLGA NPs to enhance the potential of polymeric nanocarriers for treating biofilm infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Líquidos Iônicos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Imidazóis/química , Infecções/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Microscopia Eletrônica de Varredura , Nanopartículas/administração & dosagem , Poloxâmero/química , Polissorbatos/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Tensoativos/química
7.
RSC Adv ; 8(38): 21306-21315, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539917

RESUMO

A novel mechanochemical reduction process of V2O5 to VO2 was established by milling with paraffin wax (PW, average molecular weight 254-646), serving as a reductant. The reduction progressed with increasing milling time and mass ratio V2O5 : PW (MRVP). The mechanochemically derived VO2 became phase pure after milling for 3 h with an MRVP of 30 : 1 and exhibited a reversible polymorphic transformation between tetragonal and monoclinic phases at around 53-60 °C and 67-79 °C during heating and cooling, respectively. The latent heat was above 20 J g-1 in both processes, being superior to those of commercial VO2. Doping of starting V2O5 with Cr, Mo or W at 1 at% in the form of oxide did not increase the latent heat. This is another difference from the conventionally prepared doped VO2. These anomalous heat storage properties of mechanochemically derived VO2 were discussed mainly on the basis of X-ray photoelectron spectroscopy V2p3/2 peaks combined with ion etching. The observed relatively high heat storage capacity of undoped VO2 is primarily ascribed to the abundance of V4+ ionic states introduced during milling with PW, which were stabilized with simultaneously introduced structural degradation throughout the entire particles. The possible role of a remaining small amount of PW was also discussed.

8.
RSC Adv ; 8(63): 36338-36344, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558462

RESUMO

Metal oxides with an oxidation number lower than the highest often exhibit attractive functional properties. However, conventional chemical or thermal reduction of the stable oxides is often laborious and cannot be stopped at an appropriate level of reduction. Therefore, we here try to explore non-conventional reduction processes in a solid-state without external heating. Unique features of reduction processes of SiO2 toward suboxides, SiO x (1 ≤ x < 2), were made possible by milling fumed silica nanoparticles with polyolefins (POL), i.e., polypropylene (PP) or polyethylene (PE) and a fluorine-containing one, polyvinylidene difluoride (PVDF). We mainly examined the electronic and coordination states of Si by Si2p XPS spectra and 29Si MAS NMR, respectively. They significantly differ from a similar commercial product obtained via a thermal route. Judging from the chemical shift of 29Si MAS NMR as a criterion of the degree of reduction of SiO2, the function of POL as a reductant is in the order PP ≈ PE > PVDF. Since the present solid-state reaction is free from the formation of unstable gaseous SiO as an intermediate, the products are free from the Si component in a Q0 state close to that of metallic Si. From these results we conclude that the present silicon suboxides obtained by co-milling silica with POL are closer to those defined as a random bonding model of SiO, than a random mixture model, the former being unachievable by a thermal process. The main mechanism of the present solid-state reduction is the oxygen abstraction from the SiO4 units by the polarized POL, with its simultaneous oxidative decomposition up to the state of carbon. The reaction process is simple and scalable so that it may offer a new affordable fabrication method of silicon suboxides.

9.
Inorg Chem ; 56(5): 2576-2580, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28186732

RESUMO

Yttrium oxide (yttria) with monoclinic structure exhibits unique optical properties; however, the monoclinic phase is thermodynamically stable only at pressures higher than ∼16 GPa. In this study, the effect of grain size and plastic strain on the stability of monoclinic phase is investigated by a high-pressure torsion (HPT) method. A cubic-to-monoclinic phase transition occurs at 6 GPa, which is ∼10 GPa below the theoretical transition pressure. Microstructure analysis shows that monoclinic phase forms in nanograins smaller than ∼22 nm and its fraction increases with plastic strain, while larger grains have a cubic structure. The band gap decreases and the photoluminescence features change from electric dipole to mainly magnetic dipole without significant decrease in the photoluminescence intensity after formation of the monoclinic phase. It is also suggested that monoclinic phase formation is due to the enhancement of effective internal pressure in nanograins.

10.
Microsc Res Tech ; 76(1): 66-71, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070935

RESUMO

The method to observe the exact morphology of swelled seaweed as an example of biological material by field emission scanning electron microscopy (FE-SEM) with the aid of hydrophilic ionic liquid (IL); 1-butyl-3-methylimidazolium tetrafluoroborate is reported. Seaweed was first swelled in 3.5% NaCl solution and then treated with the IL and water mixture in 1:7 weight ratios and centrifuged to remove the excess IL solution. Thus treated seaweed maintained its morphology even at high magnification and did not show drying in the FE-SEM chamber. This observation technique might be useful for various kinds of biological materials to be observed under FE-SEM.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Alga Marinha/ultraestrutura , Imidazóis/química , Líquidos Iônicos/química , Microscopia Eletrônica de Varredura/instrumentação , Alga Marinha/química
11.
Gut ; 61(4): 554-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21836027

RESUMO

BACKGROUND AND AIMS: The mechanisms of cancer cell growth and metastasis are still not entirely understood, especially from the viewpoint of chemical reactions in tumours. Glycolytic metabolism is markedly accelerated in cancer cells, causing the accumulation of glucose (a reducing sugar) and methionine (an amino acid), which can non-enzymatically react and form carcinogenic substances. There is speculation that this reaction produces gaseous sulfur-containing compounds in tumour tissue. The aims of this study were to clarify the products in tumour and to investigate their effect on tumour proliferation. METHODS: Products formed in the reaction between glucose and methionine or its metabolites were analysed in vitro using gas chromatography. Flatus samples from patients with colon cancer and exhaled air samples from patients with lung cancer were analysed using near-edge x-ray fine adsorption structure spectroscopy and compared with those from healthy individuals. The tumour proliferation rates of mice into which HT29 human colon cancer cells had been implanted were compared with those of mice in which the cancer cells were surrounded by sodium hyaluronate gel to prevent diffusion of gaseous material into the healthy cells. RESULTS: Gaseous sulfur-containing compounds such as methanethiol and hydrogen sulfide were produced when glucose was allowed to react with methionine or its metabolites homocysteine or cysteine. Near-edge x-ray fine adsorption structure spectroscopy showed that the concentrations of sulfur-containing compounds in the samples of flatus from patients with colon cancer and in the samples of exhaled air from patients with lung cancer were significantly higher than in those from healthy individuals. Animal experiments showed that preventing the diffusion of sulfur-containing compounds had a pronounced antitumour effect. CONCLUSIONS: Gaseous sulfur-containing compounds are the main products in tumours and preventing the diffusion of these compounds reduces the tumour proliferation rate, which suggests the possibility of a new approach to cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Colo/metabolismo , Gases/metabolismo , Compostos de Enxofre/metabolismo , Animais , Antineoplásicos/farmacologia , Testes Respiratórios/métodos , Proliferação de Células , Cromatografia Gasosa , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Difusão/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Flatulência/metabolismo , Glucose/metabolismo , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Neoplasias Pulmonares/metabolismo , Reação de Maillard , Metionina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos de Sulfidrila/metabolismo , Transplante Heterólogo , Espectroscopia por Absorção de Raios X/métodos
12.
J Colloid Interface Sci ; 300(1): 163-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16631767

RESUMO

The dispersion behavior of a concentrated ceramic suspension (Al(2)O(3)) has been investigated in terms of capillary suction time (CST) with varying solids concentration both in the absence as well as in the presence of dispersant (APC). The CST value is found to be the lowest at the pH(iep) whereas it increases as the pH is changed either to the acid side or alkaline side due to the repulsive forces acting among the neighboring particles keeping them in more dispersed state. It has been further observed that the CST value increases with increasing concentration of solids in the suspension. The dispersability of the suspension has been quantified in terms of dispersion ratio (DR). The higher the dispersion ratio of a particular system above unity, the better is the dispersability and vice versa. Further, quantification of dispersion stability by the CST technique is found to be useful and practical for optimization of different parameters concerning suspension stability. A correlation is found among the CST, zeta potential, colloidal stability, and maximum solids loading. It has been finally concluded that the CST method could be potentially employed as a quantitative and diagnostic technique for characterizing concentrated ceramic suspension.


Assuntos
Cerâmica/química , Coloides/química , Concentração de Íons de Hidrogênio
13.
Eur J Pharm Sci ; 26(1): 87-96, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15964179

RESUMO

Silica gel was used as core particles to design a simple preparation for controlled delivery system with a high drug content. Drug loading was carried out by immersing the silica gel in a pre-heated drug solution or suspension. HPLC, SEM, DSC, PXRD analysis and N2 adsorption studies evaluated the drug-loading process. In the next step, the drug-loaded silica gel was coated with hydroxypropyl methylcellulose (HPMC) and an aqueous dispersion of ethylcellulose (Aquacoat) to control the drug release. The release profile was determined using a dissolution test. The results showed that silica gel could adsorb great quantities of the drug, up to about 450 mg/g, by repetition of the loading process. Evaluation of the drug-loading process indicates that drug deposition in the pores occurs during the loading process and the drug-loading efficacy is strongly related to the drug solubility. On the other hand, the dissolution test showed that the drug release could be controlled by polymer coating the drug-loaded silica gel. An HPMC undercoating effectively suppresses the drug release, as it smoothes the drug-loaded core surface and aids in the formation of a continuous Aquacoat coating film. The floating property was also observed during the dissolution test.


Assuntos
Química Farmacêutica/métodos , Portadores de Fármacos/química , Géis , Dióxido de Silício , Teofilina/química , Celulose/análogos & derivados , Celulose/química , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Metilcelulose/análogos & derivados , Polietilenoglicóis/química , Porosidade , Sílica Gel , Solubilidade , Tensoativos/química , Teofilina/metabolismo , Fatores de Tempo
14.
J Colloid Interface Sci ; 291(1): 181-6, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15964586

RESUMO

The colloidal stability of suspensions of alumina particles has been investigated by measuring particle size distribution, sedimentation, viscosity, and zeta potential. Alumina particles were found to be optimally dispersed at pH around 3 to 7.8 without dispersant and at pH 8.5 and beyond with dispersant. The above results corroborate zeta potential and viscosity measurement data well. The surface charge of alumina powder changed significantly with anionic polyelectrolyte (ammonium polycarboxylate, APC) and the iep shifted toward more acidic range under different dispersant conditions. It was found that the essential role played by pH and dispersant (APC) on the charge generation and shift in the isoelectric point of alumina manifests two features: (i) the stability decreases on approaching the isoelectric point from either side of pH, and (ii) the maximum instability was found at pH 9.1 for alumina only and at pH 6.8 for alumina/APC, which is close to the isoelectric points for both the system, respectively. Using the model based on the electrical double-layer theory of surfactant adsorption through shift in isoelectric points, the authors could estimate the specific free energy of interaction (7.501 kcal/mol) between particles and dispersant. The interaction energy, zeta potential, sedimentation, and viscosity results, were used to explain the colloidal stability of the suspension.


Assuntos
Óxido de Alumínio/química , Eletrólitos/química , Água/química , Coloides , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Tamanho da Partícula , Viscosidade
15.
J Colloid Interface Sci ; 268(2): 435-40, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14643245

RESUMO

A series of aluminum-containing kanemite (Al-kanemite) samples with several Si/Al molar ratios were synthesized. The Al-kanemite samples were pillared with silica. X-ray diffractograms showed that the layered structure of the Al-kanemite samples was maintained at Si/Al= infinity approximately 10 but was broken at Si/Al = 5, 2.5, and 1. 29Si MAS NMR spectra of the Al-kanemite samples, except for that of Si/Al = 1, mainly showed peaks of Q(3) sites, which were attributed to Si(OSi)(3)(OH) groups, although peaks assigned to Si(OAl)(OSi)(2)(OH) were also seen. The 27Al MAS NMR spectra indicated that the Al-kanemite samples had only four-coordinate aluminum atoms. The FTIR spectra of pyridine adsorbed on the pillared Al-kanemite derivatives revealed Lewis acid sites on the surface. The nitrogen adsorption isotherms of the derivatives were classified as type I (Langmuir) absorption isotherms. Using the alpha(s) method, the specific surface areas of the derivatives were 572-756 m(2)g(-1), and the pore sizes were calculated as 1.25-1.83 nm. The pillared Al-kanemite derivatives had slit-shaped micropore structures.

16.
Int J Pharm ; 262(1-2): 75-82, 2003 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-12927389

RESUMO

The aim of this study is to investigate the effect of geometric structure and surface wettability of glidant on tablet hardness. Geometric structure is defined, in this work, as three-dimensional structure such as porosity, particle size and specific surface area. A variety of silica was incorporated in direct compressive fillers as glidant and mixed powder was compressed in single punch tablet machine with and without 0.5 wt.% magnesium stearate. Flowability of mixed powder was evaluated with Carr's index measurement. In the case of unlubricated compression, tablet hardness decreased as a function of additional concentration of silica. Reduction rate directly depended on surface coverage of silica over filler surface and hydrophobicity. Since surface coverage is related to geometric structure, it can be concluded that structural influence plays an important role to determine tablet hardness. While, in the case of lubricated compression, either water adsorption amount or geometric structure effects on tablet hardness. Increase of tablet hardness was observed only when hydrophilic porous and small size nonporous silica were added. All the other silica had deleterious effect on tablet hardness and in particular hydrophobicity strongly reduced tablet hardness.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Dióxido de Silício/química , Adsorção , Química Farmacêutica , Dureza , Lubrificação , Tamanho da Partícula , Porosidade , Pós , Reologia , Molhabilidade
17.
J Colloid Interface Sci ; 255(1): 171-6, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12702382

RESUMO

The silica-pillared derivatives from kanemite (NaHSi(2)O(5).3H(2)O) were prepared by intercalation of dialkyldimethylammonium (DADMA) ion and pillaring with tetraethylorthosilicate. The formation of silica pillars between the silicate sheets was demonstrated by X-ray diffraction, (29)Si CP/MAS NMR, and TEM observation. The basal spacing depended on the chain length of DADMA. Nitrogen adsorption study showed that the specific surface area was enlarged over 1000 m(2) g(-1) by the pillaring and that the pore size was in the micropore region. Water and benzene adsorption isotherms revealed that the surface properties of the pillared derivatives show hydrophobic character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...