Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1704: 207-218, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347217

RESUMO

Previously we developed a simple culture method of the iris tissues and reported novel properties of neural stem/progenitor-like cells in the iris tissues of the chick and pig. When the iris epithelium or connective tissue (stroma) was treated with dispase, embedded in Matrigel, and cultured, neuronal cells extended from the explants within 24 h of culture, and cells positively stained for photoreceptor cell markers were also observed within a few days of culturing. In ordinary flat tissue culture conditions, explants had the same differentiation properties to those in tissue environments. Previously, we suggested that iris neural stem/progenitor cells are simply suppressed from neuronal differentiation within tissue, and that separation from the tissue releases the cells from this suppression mechanism. Here, we examined whether Wnt signaling suppressed neuronal differentiation of iris tissue cells in tissue environments because the lens, which has direct contact with the iris, is a rich source of Wnt proteins. When the Wnt signaling activator 6-bromoindirubin-3'-oxime (BIO) was administered to Matrigel culture, neuronal differentiation was markedly suppressed, but cell proliferation was not affected. When Wnt signaling inhibitors, such as DKK-1 and IWR-1, were applied to the same culture, they did not have any effect on cell differentiation and proliferation. However, when the inhibitors were applied to flat tissue culture, cells with neural properties emerged. These results indicate that the interaction of iris tissue with neighboring tissues and the environment regulates the stemness nature of iris tissue cells, and that Wnt signaling is a major factor.


Assuntos
Diferenciação Celular/fisiologia , Iris/citologia , Neurônios/citologia , Células Fotorreceptoras/citologia , Células-Tronco/citologia , Via de Sinalização Wnt/fisiologia , Animais , Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Células Cultivadas , Galinhas , Colágeno , Combinação de Medicamentos , Iris/metabolismo , Laminina , Neurônios/metabolismo , Células Fotorreceptoras/metabolismo , Proteoglicanas , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo
2.
Exp Eye Res ; 123: 16-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747800

RESUMO

A simple culture method that was recently developed in our laboratory was applied to the chick iris tissues to characterize neural stem/progenitor-like cells. Iris tissue is a non-neuronal tissue and does not contain any neuronal cells. In the present study we isolated iris tissues from chick embryos just prior to hatching. The isolated iris pigmented epithelium (IPE) or the stroma was embedded in Matrigel and cultured in Dulbecco's MEM supplemented with either fetal bovine serum or the synthetic serum replacement solution B27. Within 24 h of culture, elongated cells with long processes extended out from the explants of both tissues and were positively stained for various neuronal markers such as transitin, Tuj-1 and acetylated tubulin. After a longer culture period, cells positive for photoreceptor markers like rhodopsin, iodopsin and visinin were found, suggesting that the iris tissues contain retinal stem/progenitor-like cells. Several growth factors were examined to determine their effects on neuronal differentiation. EGF was shown to dramatically enhance neuronal cell differentiation, particularly the elongation of neuronal fibers. The addition of exogenous FGF2, however, did not show any positive effects on neuronal differentiation, although FGF signaling inhibitor, SU5402, suppressed neuronal differentiation. The results show that neuronal stem/progenitor-like cells can differentiate into neuronal cells immediately after they are transferred into an appropriate environment. This process did not require any exogenous factors, suggesting that neural stem/progenitor-like cells are simply suppressed from neuronal differentiation within the tissue, and isolation from the tissue releases the cells from the suppression mechanism.


Assuntos
Diferenciação Celular/fisiologia , Iris/embriologia , Células-Tronco Neurais/citologia , Epitélio Pigmentado Ocular/citologia , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Embrião de Galinha , Técnica Indireta de Fluorescência para Anticorpo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo
3.
J Biochem ; 145(1): 59-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18977770

RESUMO

TreP [trehalose-permease (phosphotransferase system (PTS) trehalose-specific enzyme IIBC component)] is one of the target proteins of tmRNA-mediated trans-translation in Bacillus subtilis [Fujihara et al. (2002) Detection of tmRNA-mediated trans-translation products in Bacillus subtilis. Genes Cells, 7, 343-350]. The TreP synthesis is subject to CcpA-dependent carbon catabolite repression (CCR), and the treP gene contains catabolite-responsive element (cre) sequence, a binding site of repressor protein CcpA, in the coding region. Here, we demonstrated that the tmRNA-tagging of TreP occurs depending on the gene for CcpA. In the presence of CcpA, the transcription of treP mRNA terminates at 8-9 nucleotides upstream of the 5'-edge of the internal cre sequence, and translational switch to the tag-sequence occurs at the 101st amino-acid (asparagine) position from N-terminus of TreP. The results show that trans-translation reaction is involved in the tagging and degradation of the N-terminal TreP fragment produced by truncated mRNA, which is a product of transcriptional roadblock by CcpA binding to the cre sequence in the internal coding region.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
4.
Mol Microbiol ; 69(6): 1491-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18673456

RESUMO

SUMMARY: Spore formation in Bacillus subtilis is significantly impaired by the deletion of the gene for tmRNA (ssrA), which facilitates the trans-translation reaction that rescues stalled ribosomes and degrades incompletely synthesized peptides. Microscopic analysis revealed that the sporulation of most DeltassrA cells is blocked after forespore formation. Expression analysis of lacZ-fused genes directed by several RNA polymerase sigma factors showed that the synthesis of active sigma(K), encoded by the sigK gene, is predominantly inhibited in DeltassrA cells. The defect in sigma(K) synthesis is attributable to a defect in the skin element excision, which generates the sigK gene, caused in turn by reduced expression of SpoIVCA (recombinase) in DeltassrA cells.


Assuntos
Bacillus subtilis/fisiologia , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/citologia , Proteínas de Bactérias/biossíntese , Deleção de Genes , Genes Reporter , Proteínas de Membrana/biossíntese , RNA Bacteriano/genética , Esporos Bacterianos/citologia , Fatores de Transcrição/biossíntese , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
5.
Genes Cells ; 7(3): 343-50, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11918677

RESUMO

BACKGROUND: Bacterial tmRNA (10Sa RNA) is involved in a trans-translation reaction, which contributes to the degradation of incompletely synthesized peptides and the recycling of stalled ribosomes. To investigate the physiological roles of this reaction in Bacillus subtilis, we devised a system for detecting the proteins that are subject to in vivo trans-translation. RESULTS: The wild-type tmRNA gene (ssrA) in the genome was replaced by a variant ssrA encoding a tag-peptide sequence containing six histidine residues (His-tag) and two aspartic acids at the C-terminus. The His-tagged proteins that accumulated in the cells without degradation were fractionated by Ni2+-NTA column and gel electrophoresis and were detected by Western blotting with an anti-His-tag antibody. The results showed that the trans-translation occurred more frequently at a high temperature (50 degrees C) than at a low temperature (37 degrees C). Two-dimensional (2D) gel electrophoresis of the products revealed many distinct spots, which represent specific target proteins for the trans-translation reaction. Furthermore, the 2D gel patterns of the products from cells cultured at high and low temperatures were apparently different. Several tagged proteins were identified by the N-terminal amino acid sequences of the products. CONCLUSION: Trans-translation occurs more frequently at high temperature than at low temperature, and different proteins are tagged at different temperatures.


Assuntos
Bacillus subtilis/genética , Peptídeos/metabolismo , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Mutação , Biossíntese de Proteínas , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA