Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 63(5): 311-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25948324

RESUMO

The purpose of this study was to identify and characterize new crystalline bulking agents applicable to freeze-dried pharmaceuticals. Thermal analysis of heat-melt sugar and sugar alcohol solids as well as their frozen aqueous solutions showed high crystallization propensity of meso-erythritol and D-mannitol. Experimental freeze-drying of the aqueous meso-erythritol solutions after their cooling by two different methods (shelf-ramp cooling and immersion of vials into liquid nitrogen) resulted in cylindrical crystalline solids that varied in appearance and microscopic structure. Powder X-ray diffraction and thermal analysis indicated different crystallization processes of meso-erythritol depending on the extent of cooling. Cooling of the frozen meso-erythritol solutions at temperatures lower than their Tg' (glass transition temperature of maximally freeze-concentrated phase, -59.7°C) induced a greater number of nuclei in the highly concentrated solute phase. Growth of multiple meso-erythritol anhydride crystals at around -40°C explains the powder-like fine surface texture of the solids dried after their immersion in liquid nitrogen. Contrarily, shelf-ramp cooling of the frozen solution down to -40°C induced an extensive growth of the solute crystal from a small number of nuclei, leading to scale-like patterns in the dried solids. An early transition of the freezing step into primary drying induced collapse of the non-crystalline region in the cakes. Appropriate process control should enable the use of meso-erythritol as an alternative crystalline bulking agent in freeze-dried formulations.


Assuntos
Eritritol/química , Liofilização , Cristalização , Excipientes/química , Temperatura
2.
Int J Pharm ; 389(1-2): 107-13, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20097277

RESUMO

Physical properties and protein-stabilizing effects of sugar alcohols in frozen aqueous solutions and freeze-dried solids were studied. Various frozen sugar alcohol solutions showed a glass transition of the maximally freeze-concentrated phase at temperatures (T(g)'s) that depended largely on the solute molecular weights. Some oligosaccharide-derived sugar alcohols (e.g., maltitol, lactitol, maltotriitol) formed glass-state amorphous cake-structure freeze-dried solids. Microscopic observation of frozen maltitol and lactitol solutions under vacuum (FDM) indicated onset of physical collapse at temperatures (T(c)) several degrees higher than their T(g)'s. Freeze-drying of pentitols (e.g., xylitol) and hexitols (e.g., sorbitol, mannitol) resulted in collapsed or crystallized solids. The glass-forming sugar alcohols prevented activity loss of a model protein (LDH: lactate dehydrogenase) during freeze-drying and subsequent storage at 50 degrees C. They also protected bovine serum albumin (BSA) from lyophilization-induced secondary structure perturbation. The glass-forming sugar alcohols showed lower susceptibility to Maillard reaction with co-lyophilized L-lysine compared to reducing and non-reducing disaccharides during storage at elevated temperature. Application of the oligosaccharide-derived sugar alcohols as alternative stabilizers in lyophilized protein formulations was discussed.


Assuntos
Excipientes/química , L-Lactato Desidrogenase/química , Soroalbumina Bovina/química , Álcoois Açúcares/química , Animais , Bovinos , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Liofilização , Peso Molecular , Temperatura , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...