Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 3920-3926, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230686

RESUMO

Dimethyl carbonate (DMC) is a linear carbonate solvent commonly used as an electrolyte for electric double-layer capacitors (EDLCs) and Li-ion batteries. However, there are serious problems with the use of DMC as an electrolyte solvent: (1) low ionic conductivity when using Li salts (e.g. LiBF4) and (2) liquid-liquid phase separation when using spiro-type quaternary ammonium salts (e.g. SBPBF4). Dual-cation electrolytes, i.e., bi-salt (SBPBF4 and LiBF4) in DMC, are promising candidates to avoid the phase separation issue and to enhance the total and Li+ conductivities. Herein, we reported a specific Li-ion structure in DMC-based dual-cation electrolytes by combining high-energy X-ray total scattering (HEXTS) and all-atom molecular dynamics (MD) simulations. Quantitative radial distribution function analysis based on experimental and simulation results revealed that the phase-separated SBPBF4/DMC (i.e., the bottom phase of 1 M SBPBF4/DMC) forms long-range ion ordering based on the structured SBP+-BF4- ion pairs. When adding LiBF4 salt into SBPBF4/DMC (i.e., dual-cation electrolyte), the ordered SBP+-BF4- structure disappeared owing to the formation of Li-ion solvation complexes. We found that in the dual-cation electrolyte Li ions form multiple Li+-Li+ ordered complexes in spite of relatively low Li-salt concentration (1 M), being a promising Li+-conducting medium with reduced Li salt usage and low viscosity.

2.
Chem Rec ; 23(8): e202200269, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36638263

RESUMO

Plastics are wonderful materials that have modernized our daily life; however, importance of effective recycling of plastics is gradually recognized widely. In this account, we describe our discovery of new and efficient methods for the chemical recycling of plastics using ionic liquids (ILs). Since the chemical recycling usually requires high temperature conditions to breakdown chemical bonds in polymeric materials, we thought that less-flammability and non-volatility of ionic liquids are the most suitable physical properties for this purpose. Ionic liquids successfully depolymerized polyamides and unsaturated polyesters smoothly and corresponding monomeric materials were obtained in good yields. To the best of our knowledge, this was the first use of Ionic liquids for such reactions. However, we encountered another difficult problem-separation. To solve the problem, we developed solubility-switchable ionic liquids, a new type of ionic liquids in which solubility is readily changed using the chemistry of protective groups. Conversion between hydrophilic and lipophilic forms was readily achieved using a simple chemical treatment under mild conditions, and the complete separation of products was achieved by liquid-liquid-extraction. The robustness of either form unlocks their wide use as reaction solvents.

3.
Phys Chem Chem Phys ; 24(44): 27321-27327, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36326032

RESUMO

We report the structural and electrochemical characteristics of lithium (Li)-ion battery (LIB) electrolyte solutions using an ethylene sulfite (ES) solvent that is used as an electrolyte additive for LIBs. From dilute to highly concentrated ES solutions with lithium bis(fluorosulfonyl)amide (LiFSA), the formation of Li-ion complexes was investigated using a combined Raman and infrared spectroscopy study with the aid of density functional theory (DFT) calculations to quantitatively determine their solvation and ion-pair structures depending on the Li salt concentration (cLi). The results reveal that, in the dilute solutions (<1.0 mol dm-3), Li-ions are fully solvated with ES molecules to form a tetrahedral-like [Li(ES)4]+ complex; however, with the increasing cLi (up to 2.5 mol dm-3), the Li-ion complex changes in structure to form contact ion-pairs coordinated with both ES and FSA anions. It also reveals that further increasing cLi to approximately 3.0 mol dm-3 leads to the ionic aggregate formation, i.e., multiple Li-ion complexes linked via several FSA anions. LiFSA/ES electrolyte solutions exhibited a reversible Li-ion insertion/deinsertion reaction into/from the graphite anode irrespective of cLi. This is due to the high-grade ES-derived passivation films on the electrode as a result of the preferential reductive decomposition of the ES molecules trapped within the Li-ion coordination sphere. According to the charge-discharge test, the concentrated LiFSA/ES solutions exhibited the high C-rate performance, which is superior to the concentrated electrolyte solutions using conventional organic solvents.

4.
Soft Matter ; 18(45): 8582-8590, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367165

RESUMO

A new class of ion gels, termed ultrahigh molecular weight (UHMW) gels, formed by physical entanglement of ultrahigh molecular weight polymers in ionic liquids, are synthesised using facile one step radical polymerisation with significantly low initiator conditions, and exhibit superior mechanical characteristics such as stretchability, recyclability, and room temperature self-healing ability. In this study, UHMW gels are synthesised using various combinations of monomer and IL structures, and the effect of their chemical structures on the physicochemical properties of UHMW gels are thoroughly investigated. UHMW polymers are prepared in situ for all combinations of ILs and monomers used in this study, indicating the wide applicability of this fabrication strategy. The structure-property relationships between chemical structures and mechanical properties of UHMW gels are investigated in detail. Furthermore, the differences in self-healing efficiency of UHMW gels depending on the chemical structure is discussed in terms of individual polymer conformation and polymer-polymer interaction based on molecular dynamics simulations.

5.
Sci Adv ; 8(42): eadd0226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260682

RESUMO

Highly stretchable and self-healing polymer gels formed solely by physical entanglements of ultrahigh-molecular weight (UHMW) polymers were fabricated through a facile one-step process. Radical polymerization of vinyl monomers in ionic liquids under very low initiator concentration conditions produced UHMW polymers of more than 106 g/mol with nearly 100% yield, resulting in the formation of physically entangled transparent polymer gels. The UHMW gels showed excellent properties, such as high stretchability, high ionic conductivity, and recyclability. Furthermore, the UHMW gel exhibited room temperature self-healing ability without any external stimuli. The tensile experiments and molecular dynamics simulations indicate that the nonequilibrium state of the fractured surfaces and microscopic interactions between the polymer chains and solvents play a vital role in the self-healing ability. This study provides a physical approach for fabricating stretchable and self-healing polymer gels based on UHMW polymers.

6.
Phys Chem Chem Phys ; 24(16): 9626-9633, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403631

RESUMO

We report a solid polymer electrolyte with an ideal polyether network that was synthesized by using tetra-functional poly(ethylene glycol) (TetraPEG) and lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) salt. The solid TetraPEG electrolyte had few network defects (<5%) and exhibited high mechanical toughness by enduring approximately 11-fold elongation at a 1 : 10 ratio of Li salt to O atoms of PEG (Li/OPEG). We found that the mechanical properties strongly depend on the Li/OPEG ratio, which mainly contributes to the density of crosslinking points in the electrolyte. Raman spectroscopy and high-energy X-ray total scattering were used with all-atom molecular dynamics simulations to visualize the structural effects of Li-ion coordination in the TetraPEG network. At lower salt contents (Li/OPEG = 1 : 10), Li ions were found to preferentially coordinate with OPEG atoms rather than the TFSA anions to form crown ether-like Li+-PEG complexes as ion pair-free species. With increasing salt content, the TFSA anions partially coordinated with Li ions through O atoms of TFSA (OTFSA) to afford contact ion pairs surrounded by both OPEG and OTFSA atoms. Finally, the ion pairing enhanced mononuclear ion pairs as well as multinuclear ionic aggregates when more Li salt was added. This structural change in the Li-ion complexes was directly reflected by the ion-conducting properties of the electrolyte. The TetraPEG electrolyte composed of the ion pair-free Li+ species (Li/OPEG = 1 : 10) exhibited higher ionic conductivity, and the conductivity gradually decreased with increasing salt content because of extensive ion pairing for both mononuclear contact ion pairs and multinuclear aggregates. Regarding the electrochemical properties, the optimum electrolyte composition to realize a reversible Li deposition/dissolution reaction for a negative electrode was found to be Li/OPEG = 1 : 4.

7.
ACS Omega ; 7(51): 48540-48554, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591188

RESUMO

Various solubility-switchable ionic liquids were prepared. Their syntheses were readily achieved in a few steps from glyceraldehyde dimethylacetal or its derivatives. Pyridinium, imidazolium, and phosphonium derivatives also exhibited solubility-switchable properties; acetal-type ionic liquids were soluble in organic solvents, while diol-type ones exhibited a preference for being dissolved in the aqueous phase. The solubility of the ionic liquids prepared in this study also depended on the number of carbon atoms in the cationic parts of the ionic liquids. Interconversion between the diol-type and the acetal-type ionic liquids was readily achieved under the standard conditions for diol acetalization and acetal hydrolysis. One of the prepared ionic liquids was also examined as a solvent for an organic reaction.

8.
Phys Chem Chem Phys ; 23(31): 16966-16972, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338253

RESUMO

We report a controlled polymer network gel electrolyte based on a multifunctional poly(ethylene glycol) (PEG) prepolymer (herein, tetrafunctional PEGs (tetra-PEGs) and bisfunctional linear PEGs (linear-PEGs)) and an ionic liquid (IL)-based electrolyte solution containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSA) salt. The gel electrolyte was obtained via a gelation reaction, i.e., the Michael addition reaction between maleimide (MA)-terminated tetra-PEGs and thiol (SH)-terminated tetra- or linear-PEGs (termed tetra/tetra-PEG gel or tetra/linear-PEG gel systems), in a LiTFSA/IL solution under noncatalytic conditions at room temperature. For the tetra/linear-PEG system, the gelation reaction depended on the ratio of tetra-PEG-MA and linear-PEG-SH; an optimum terminal MA/SH ratio of 1 : 1 yielded a reaction efficiency (p) of ∼98% (an ideal polymer network structure). The tetra/tetra-PEG system with an MA/SH ratio of 1 : 1 also achieved a reaction efficiency of ∼98%. Time-resolved rheological measurements revealed that the network formation process can be categorized into three steps: (I) oligomer formation at an early stage of the reaction, (II) formation of a roughly linked polymer network with a large mesh size as the reaction proceeded, and (III) full network formation also at the local scale near the gelation completion time. The resulting tetra/linear-PEG ion gel with an optimum MA/SH ratio of 1 : 1 exhibited high stretchability, enduring approximately 10-fold elongation, and superior ion-conducting properties compared with the corresponding IL-based electrolyte solution.

9.
J Phys Chem B ; 125(27): 7477-7484, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34196549

RESUMO

It has been reported that aqueous lithium ion batteries (ALIBs) can operate beyond the electrochemical window of water by using a superconcentrated electrolyte aqueous solution. The liquid structure, particularly the local structure of the Li+, which is rather different from conventional dilute solution, plays a crucial role in realizing the ALIB. To reveal the local structure around Li+, the superconcentrated LiTFSA (TFSA: bis(trifluoromethylsulfonil)amide) aqueous solutions were investigated by means of Raman spectroscopic experiments, high-energy X-ray total scattering measurements, and the neutron diffraction technique with different isotopic composition ratios of 6Li/7Li and H/D. The Li+ local structure changes with the increase of the LiTFSA concentration; the oligomer ([Lip(TFSA)q](p-q)+ (q > 2) forms at the molar fraction of LiTFSA (xLiTFSA) > 0.25. The average structure can be determined in which two water molecules and two oxygen atoms of TFSA anion(s) coordinate to the Li+ in the superconcentrated LiTFSA aqueous solution (LiTFSA)0.25(H2O)0.75. In addition, the intermolecular interaction between the neighboring water molecules was not found, and the hydrogen-bonded interaction in the solution should be significantly weak. According to the coordination number of the oxygen atom (TFSA or H2O), a variety of TFSA- and H2O coordination manners would exist in this solution; in particular, the oligomer is formed in which the monodentate TFSA cross-links Li+.


Assuntos
Lítio , Água , Íons , Difração de Nêutrons , Análise Espectral Raman
10.
ACS Appl Mater Interfaces ; 13(24): 28098-28107, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34043316

RESUMO

We fabricated a thin film of layered MnO2 whose interlayer space was occupied by hydrated Ni2+ and Cu2+ ions. The process consisted of electrodeposition of layered MnO2 intercalated with tetrabutylammonium cations (TBA+) by anodic oxidation of aqueous Mn2+ ions in the presence of TBA+, followed by ion exchange of the initially incorporated bulkier TBA+ with the denser transition metals in solution. The resulting layered MnO2 co-intercalated with Ni2+ and Cu2+ ions (NiCu/MnO2) catalyzed the ammonia oxidation reaction (AOR) in an alkaline electrolyte with a much lower overpotential than its Ni2+- and Cu2+-intercalated single-cation counterparts. Surprisingly, the NiCu/MnO2 electrode achieved a faradic efficiency as high as nearly 100% (97.4%) for nitrogen evolution at a constant potential of +0.6 V vs Hg/HgO. This can be ascribed to the occurrence of the AOR in the potential region where water is stable and dimerization of the partially dehydrogenated ammonia species is preferred, thereby forming an N-N bond, rather than to be further oxidized into NOx species.

11.
Phys Chem Chem Phys ; 23(16): 10130-10131, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870395

RESUMO

Correction for 'Local structure of a highly concentrated NaClO4 aqueous solution-type electrolyte for sodium ion batteries' by Ryo Sakamoto et al., Phys. Chem. Chem. Phys., 2020, 22, 26452-26458, DOI: 10.1039/D0CP04376A.

12.
Phys Chem Chem Phys ; 23(4): 2622-2629, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475115

RESUMO

To achieve single-ion conducting liquid electrolytes for the rapid charge and discharge of Li secondary batteries, improvement in the Li+ transference number of the electrolytes is integral. Few studies have established a feasible design for achieving Li+ transference numbers approaching unity in liquid electrolytes consisting of low-molecular-weight salts and solvents. Previously, we studied the effects of Li+-solvent interactions on the Li+ transference number in glyme- and sulfolane-based molten Li salt solvates and clarified the relationship between this transference number and correlated ion motions. In this study, to deepen our insight into the design principles of single-ion conducting liquid electrolytes, we focused on the effects of Li+-anion interactions on Li ion transport in glyme-Li salt equimolar mixtures with different counter anions. Interestingly, the equimolar triglyme (G3)-lithium trifluoroacetate (Li[TFA]) mixture ([Li(G3)][TFA]) demonstrated a high Li+ transference number, estimated via the potentiostatic polarization method (tPPLi = 0.90). Dynamic ion correlation studies suggested that the high tPPLi could be mainly ascribed to the strongly coupled Li+-anion motions in the electrolytes. Furthermore, high-energy X-ray total scattering measurements combined with all-atom molecular dynamics simulations showed that Li+ ions and [TFA] anions aggregated into ionic clusters with a relatively long-range ion-ordered structure. Therefore, the collective motions of the Li ions and anions in the form of highly aggregated ion clusters, which likely diminish rather than enhance ionic conductivity, play a significant role in achieving high tPPLi in liquid electrolytes. Based on the dynamic ion correlations, a potential design approach is discussed to accomplish single-ion conducting liquid electrolytes with high ionic conductivity.

13.
ACS Appl Mater Interfaces ; 13(5): 6201-6207, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502162

RESUMO

We propose a molecular design for lithium (Li)-ion-ordered complex structures in nonflammable concentrated electrolytes that facilitates the Li-ion battery (LIB) electrode reaction to produce safer LIBs. The concentrated electrolyte, composed of Li bis(fluorosulfonyl)amide (FSA) salt and a nonflammable tris(2,2,2-trifluoroethyl) phosphate (TFEP) solvent, showed no electrode reaction (i.e., no Li-ion intercalation into the negative graphite electrode); however, introducing a small molecular additive (acetonitrile [AN]) into concentrated TFEP-based electrolytes is shown to improve the battery electrode reaction, leading to reversible charge/discharge behavior. Combined high-energy X-ray total scattering experiments incorporating all-atom molecular dynamics simulations were used to visualize Li-ion complexes at the molecular level and revealed that (1) Li ions form mononuclear complexes in a concentrated LiFSA/TFEP (without additives) owing to solvation steric effects arising from the molecular size of TFEP and (2) adding a small-sized additive, AN, reduces the steric effect and triggers a change in Li-ion structures, i.e., the formation of a specific Li-ion-ordered structure linked via FSA anions. These Li-ion-ordered complexes stabilize the energy of the lowest unoccupied molecular orbital (LUMO) on FSA anions, which is key to producing an anion-derived solid electrolyte interphase (SEI) at the graphite electrode. We performed in situ surface-enhanced infrared absorption spectroscopy and discussed the electrode/electrolyte interface and SEI formation mechanisms in TFEP-based concentrated electrolyte systems.

14.
J Phys Chem B ; 124(46): 10456-10464, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33161707

RESUMO

Neutron diffraction measurements on 6Li/7Li isotopically substituted 10 and 33 mol % *LiTFSA (lithium bis(trifluoromethylsulfonyl)amide)-AN-d3 (acetonitrile-d3) and 10 and 33 mol % *LiTFSA-DMF-d7(N,N-dimethylformamide-d7) solutions have been carried out in order to obtain structural insights on the first solvation shell of Li+ in highly concentrated organic solutions. Structural parameters concerning the local structure around Li+ have been determined from the least squares fitting analysis of the first-order difference function derived from the difference between carefully normalized scattering cross sections observed for 6Li-enriched and natural abundance solutions. In 10 mol % LiTFSA-AN-d3 solution, 3.25 ± 0.04 AN molecules are coordinated to Li+ with a intermolecular Li+···N(AN) distance of 2.051 ± 0.007 Å. It has been revealed that 1.67 ± 0.07 AN molecules and 2.00 ± 0.01 TFSA- are involved in the first solvation shell of Li+ in the 33 mol % LiTFSA-AN solution. The nearest neighbor Li+···NAN and Li+···OTFSA- distances are obtained to be r(Li+···N) = 2.09 ± 0.01 Å and r(Li+···O) = 1.88 ± 0.01 Å, respectively. The first solvation shell of Li+ in the 10 mol % LiTFSA-DMF-d7 solutions contains 3.4 ± 0.1 DMF molecules with an intermolecular Li+···ODMF distance of 1.95 ± 0.02 Å. In highly concentrated 33 mol % LiTFSA-DMF-d7 solutions, there are 1.3 ± 0.2 DMF molecules and 3.2 ± 0.2 TFSA- in the first solvation shell of Li+ with intermolecular distances of r(Li+···ODMF) = 1.90 ± 0.02 Å and r(Li+···OTFSA-) = 2.01 ± 0.01 Å, respectively. The Li+···TFSA- contact ion pair stably exists in highly concentrated 33 mol % LiTFSA-AN and -DMF solutions.

15.
Phys Chem Chem Phys ; 22(45): 26452-26458, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180893

RESUMO

Aqueous Na-ion batteries with highly concentrated NaClO4 aq. electrolytes are drawing attention as candidates for large-scale rechargeable batteries with a high safety level. However, the detailed mechanism by which the potential window in 17 m NaClO4 aq. electrolyte was expanded remains unclear. Therefore, we investigated the local structure around a Na+ ion or a ClO4- ion using X-ray diffraction combined with empirical potential structure refinement (EPSR) modelling and Raman spectroscopy. The results showed that in 17 m NaClO4 aq. electrolyte, most of the water molecules were coordinated to Na+ ions and few free water molecules were present. The 17 m NaClO4 aq. electrolyte could be interpreted as widening the potential window because almost all water molecules participated in hydration of the Na+ ions.

16.
Langmuir ; 36(19): 5227-5235, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32347730

RESUMO

A fluorine-doped tin oxide-coated glass electrode modified with a bilayer film of underlying α-Co(OH)2 and overlying Mg-intercalated and Co-doped δ-type (layered) MnO2 (Mg|Co-MnO2) preferentially yielded oxygen with a Faradaic efficiency as high as 79% in the presence of chloride ions at high concentration (0.5 M). This noble metal-free electrode was fabricated by cathodic electrolysis of aqueous Co(NO3)2 followed by anodic electrolysis of a mixture of Mn2+, Co2+, and cetyltrimethylammonium (CTA+) ions in water. The CTA+ ions accommodated in the interlayer spaces of Co-doped δ-MnO2 were replaced with Mg2+ by ion exchange. The upper Mg|Co-MnO2 could effectively block the permeation of Cl- ions and allow only H2O and O2, while the under α-Co(OH)2 acted as an oxidation catalyst for the H2O penetrated through the upper coating. Thus, the oxygen evolution reaction (OER) was preferred to the chlorine evolution reaction (CER). In artificial seawater (pH 8.3), the blocking effect against Cl- decreased because of ion exchange of the intercalated Mg2+ ions with Na+ in solution, but the OER efficiency still remained at 57%, much higher than that (28%) without the upper Mg|Co-MnO2. This demonstrates that the interlayer spaces between MnO2 layers acted as pathways for H2O molecules to reach the active sites of the underlying Co(OH)2. Density functional theory (DFT) calculations revealed that the most stable structure of hydrated Mg2+ ion, in which a part of coordinated H2O molecules is hydrolyzed, has less affinity toward Cl- ion than that of hydrated Na+ ion.

17.
J Phys Chem B ; 124(18): 3784-3790, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293893

RESUMO

Herein, we report the physicochemical and structural properties of a new solubility-switchable ionic liquid (IL) comprising the glycerammonium (GA) cation with a hydrophilic group, the GA cation attached to an acetal-based protective group [protected GA (PGA)], and bis(trifluoromethanesulfonyl)amide (TFSA). The interionic volumes (Vinter) of the hydrophobic [PGA][TFSA] and hydrophilic [GA][TFSA] ILs were evaluated based on solution density, revealing weaker ion-ion interactions in these relative to conventional ILs. The [PGA][TFSA] and [GA][TFSA] also exhibit poor ion-conducting properties, with up to an order of magnitude lower ionic conductivity (σ) and self-diffusion coefficient (D), as compared with conventional ILs. Radial distribution functions derived from high-energy X-ray total scattering experiments [Gexp(r)] and molecular dynamics (MD) simulations [GMD(r)] indicate that nearest-neighbor ion-ion interactions in the [PGA][TFSA] and [GA][TFSA] are comparable to those in imidazolium-based IL. Conversely, these are appreciably weakened at the second- and third-neighbors and thus less structured in the long range (r > 12 Å) and very different from the highly ordered imidazolium IL. The atom-atom pair correlation function derived from the MD simulations disclose that at a local scale, specific interactions are absent, with only an electrostatic interaction in the [PGA][TFSA], whereas the GA cations interact with TFSA anions via hydrogen bonding of diol groups in the GA and O atoms in the TFSA. No hydrogen bonding group within the PGA cation leads to weak ion-hydration resulting in a phase separation of [PGA][TFSA] and water; in contrast, the GA cations are easily hydrogen-bonded with water molecules to be miscible in aqueous solutions.

18.
Phys Chem Chem Phys ; 22(10): 5561-5567, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32109267

RESUMO

We report the structure of poly(ethylene glycol) (PEG) in a imidazolium-based ionic liquid (IL) electrolyte containing lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) salt, as determined using Raman spectroscopy, high-energy X-ray total scattering (HEXTS), and molecular dynamics (MD) simulations. The Raman spectral study indicated that the TFSA anions bound to Li ions are desolvated when PEG is added to the LiTFSA/IL solution to form stable Li+-PEG complexes. Via quantitative analysis of the obtained Raman spectra, the desolvation number of the TFSA [nd, per one oxygen atom of the ethylene glycol unit (Opeg)] was determined to be ∼0.4, irrespective of the shape (star or linear) and molecular weight of the polymer. On the basis of radial distribution functions obtained from the HEXTS experiments and MD simulations, we demonstrated that the Li+-PEG complexation induces a conformational change of the PEG chain from gauche/anti-conformers to a syn conformer. This Li+-coordination-induced conformation resulted in a decrease in the radius of gyration (Rg) of the PEG chain, implying a folding behavior of polymer chains through multiple OpegLi+Opeg interactions.

19.
J Pharm Pharmacol ; 72(4): 575-582, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975441

RESUMO

OBJECTIVES: Ezrin (Ezr), radixin (Rdx) and moesin (Msn) (ERM) proteins anchor other proteins to the cell membrane, serving to regulate their localization and function. Here, we examined whether ERM proteins functionally regulate breast cancer resistance protein (BCRP) and P-glycoprotein in cell lines derived from lung, intestinal and renal cancers. METHODS: ERM proteins were each silenced with appropriate siRNA. BCRP and P-gp functions were evaluated by means of efflux and uptake assays using 7-ethyl-10-hydroxycamptothecin (SN-38) and rhodamine123 (Rho123) as specific substrates, respectively, in non-small cell lung cancer HCC827 cells, intestinal cancer Caco-2 cells and renal cancer Caki-1 cells. KEY FINDINGS: In HCC827 cells, the efflux rates of SN-38 and Rho123 were significantly decreased by knockdown of Ezr or Msn, but not Rdx. However, BCRP function was unaffected by Ezr or Rdx knockdown in Caco-2 cells, which do not express Msn. In Caki-1 cells, Rdx knockdown increased the intracellular SN-38 concentration, while knockdown of Ezr or Msn had no effect. CONCLUSIONS: Our findings indicate that regulation of BCRP and P-gp functions by ERM proteins is organ-specific. Thus, if the appropriate ERM protein(s) are functionally suppressed, accumulation of BCRP or P-gp substrates in lung, intestine or kidney cancer tissue might be specifically increased.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Células CACO-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Humanos , Irinotecano/metabolismo , Neoplasias Renais/metabolismo , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Rodamina 123/metabolismo
20.
Phys Chem Chem Phys ; 21(21): 11435-11443, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31112162

RESUMO

Herein, we propose Li-ion solvation-controlled electrolytes based on non-flammable organic solvent TFEP and an LiFSA salt [TFEP: tris(2,2,2-trifluoroethyl)phosphate, LiFSA: lithium bis(fluorosulfonyl)amide] to allow Li-ion insertion into a graphite electrode for Li-ion batteries. Comprehensive structural study based on (1) infrared (IR)/Raman spectroscopy, (2) high-energy X-ray total scattering (HEXTS), and (3) molecular dynamics (MD) simulation revealed the solvation (or coordination) structures of Li ions in TFEP-based electrolytes at the molecular level. In binary LiFSA/TFEP with a Li salt concentration (cLi) < 1.0 mol dm-3, Li ions are coordinated with both TFEP and FSA components; in detail, two TFEP molecules coordinate in an O-donating monodentate manner and one FSA in an O-donating bidentate manner to form [Li(TFEP)2(bi-FSA)] as the major species. We demonstrated that adding acetonitrile (AN) to the LiFSA/TFEP electrolytes caused structural changes in the Li-ion complexes. The bi-FSA bound to the Li ion changed its coordination mode to mono-FSA, which was induced by solvating AN molecules to Li ions. The redox reaction corresponding to insertion/deinsertion of Li ions into/from the graphite electrode successfully occurred in 1.0 mol dm-3 LiFSA/TFEP with an AN electrolyte system, while there was no or reduced Li-ion insertion in the electrolyte without AN. We discussed the relationship between the structure and electrode reaction of the Li-ion complexes based on the FSA-coordination characteristics; i.e., in LiFSA/TFEP with the AN system, the mono-FSA bound to the Li ion is easier to decoordinate due to weaker Li+mono-FSA- interactions rather than the Li+bi-FSA- interactions, which mainly contribute to charge-transfer at the electrode/electrolyte interface to allow Li-ion insertion/deinsertion in the graphite anode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...