Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 162(10): 570-578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36682354

RESUMO

There are 2 genetically divergent groups in the dojo loach Misgurnus anguillicaudatus: A and B. Although most wild-type diploids reproduce sexually, clonal diploids (clonal loach) reproduce gynogenetically in certain areas. Clonal loaches produce unreduced isogenic eggs by premeiotic endomitosis, and such diploid eggs develop gynogenetically following activation by the sperm of sympatric wild-type diploids. These clonal loaches have presumably arisen from past hybridization events between 2 different ancestors. The genomic differences between these 2 groups have not been completely elucidated. Thus, new genetic and cytogenetic markers are required to distinguish between these 2 groups. Here, we compared the 5S rDNA region to develop markers for the identification of different dojo loach groups. The nontranscribed sequence (NTS) of the 5S rDNA was highly polymorphic and group-specific. NTSs were found in clades of 2 different groups in clonal loaches. In contrast, we did not find any group-specific sequences in the coding region of the 5S rRNA gene. Sequences were located near the centromere of the short arm of the largest submetacentric chromosomes in groups A and B and clonal loaches. Thus, the 5S rDNA of the dojo loach is conserved at the chromosomal location. Whereas, the sequences of the NTS regions evolved group-specifically in the dojo loach, with the sequences of both groups being conserved in clonal loaches.

2.
Zebrafish ; 18(5): 316-325, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34491109

RESUMO

The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-buckyball mRNA and in situ hybridization against vasa mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Blástula , Desenvolvimento Embrionário , Temperatura
3.
Theriogenology ; 172: 95-105, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147877

RESUMO

Ginbuna (Carassius auratus langsdorfii (Teleostei: Cyprinidae)) occur in diploid, triploid, and tetraploid forms in wild populations. Diploid females reproduce bisexually, whereas polyploid (triploid and tetraploid) females reproduce gynogenetically with no contribution from sperm nuclei. However, tetraploid males produce diploid sperm. The mechanism responsible for the differences in egg and sperm ploidy has not been elucidated as tetraploid males are rare in wild populations. Here, we aimed to characterize the types of sperm and elucidate the mechanism of spermatogenesis in ginbuna. In the present study, we artificially produced tetraploid males by crossbreeding triploid ginbuna females with diploid goldfish (Carassius auratusauratus) males via accidental incorporation of sperm nuclei. We then examined spermatogenesis to reveal the process by which reduced diploid sperm are generated from tetraploid germ cells. DNA fingerprinting by random amplified polymorphic DNA (RAPD)-PCR indicated that the tetraploid progeny had a paternally derived genome. For the tetraploid male sperm, there were narrow (N-type) and broad (B-type) flow cytometrical histograms. The N-type were determined to be diploid with a low coefficient of variation (CV) by flow cytometry. The B-type were found to be aneuploid (hypodiploid to hexaploid) with a high CV. The head sizes of B-type sperm were variable, whereas those of the N-type sperm were uniform. Computer-assisted sperm analysis (CASA) revealed that both the haploid and diploid B-type sperm were weakly motile compared with the haploid sperm of goldfish and the diploid N-type sperm of tetraploid males. Bivalents and various multivalents were observed in the meiotic configurations of diploid spermatogenesis. In aneuploid spermatogenesis, most of the chromosomes were unpaired univalents and there were very few bivalents. Our findings provide empirical evidence for two different types of spermatogenesis in tetraploid C. a. langsdorfii males. Meiotic synapses might explain the observed differences in the ploidy status of the two sperm types.


Assuntos
Diploide , Tetraploidia , Aneuploidia , Animais , Feminino , Carpa Dourada/genética , Haploidia , Masculino , Poliploidia , Técnica de Amplificação ao Acaso de DNA Polimórfico/veterinária , Espermatozoides , Triploidia
4.
Cytogenet Genome Res ; 161(3-4): 178-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33971659

RESUMO

In dojo loach (Misgurnus anguillicaudatus), although most wild types are gonochoristic diploids that are genetically differentiated into 2 groups, A and B, clonal lineages appear in certain localities. Clonal loaches have been considered to have hybrid origins between the 2 groups by a series of genetic studies. In this study, using FISH with a newly developed probe (ManDra-A), we identified 26 (1 pair of metacentric and 12 pairs of telocentric chromosomes) of 50 diploid chromosomes in contemporary wild-type group A loach. In contrast, ManDra-A signals were not detected on metacentric chromosomes derived from the ancestral group A of clonal loach. The FISH results clearly showed the presence of certain differentiations in metacentric chromosomes between ancestral and contemporary group A loach. Two-color FISH with ManDra-A and group B-specific ManDra (renamed ManDra-B) probes reconfirmed the hybrid origin of clones by identifying chromosomes from both groups A and B in metaphases. Our results showed the hybrid origin of clonally reproducing fish and the possibility that chromosomal differentiation between ancestral and contemporary fish can affect gametogenesis. In meiotic spermatocytes of sex-reversed clones, ManDra-A, and not ManDra-B, signals were detected in 12 out of 50 bivalents. Thus, the results further support the previous conclusion that clonal gametogenesis was assured by pairing between sister chromosomes duplicated from each ancestral chromosome from group A or B. Our study deepens the knowledge about the association between clonality and hybridity in unisexual vertebrates.


Assuntos
Cromossomos/genética , Cipriniformes/genética , Sondas de DNA/genética , Genoma/genética , Hibridização in Situ Fluorescente/métodos , Animais , Pareamento Cromossômico/genética , Células Clonais/metabolismo , Cipriniformes/classificação , Diploide , Feminino , Hibridização Genética/genética , Masculino , Meiose/genética , Microscopia de Fluorescência , Triploidia
5.
Zygote ; 29(1): 20-26, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33012305

RESUMO

Rivulidae comprises a family of fish largely distributed in Brazil that includes 201 species, of which 125 are considered endangered. This fact emphasizes the need for development of conservation strategies including studies on genetics and reproduction. In this paper, we describe aspects of biology and reproduction of the rivuliid species Hypsolebias sertanejo. We outline the reproductive behaviour of this species under laboratory conditions, analyze ploidy status by flow cytometry, describe reproductive behaviour and performance and test dry and wet incubation of eggs. Although H. sertanejo showed well known patterns of reproductive behaviour, we verified many peculiarities inherent to its reproductive biology. As expected, most individuals were diploid (87.71%), however 14.29% were considered mosaics. Although no sterility was observed within mosaics, infertility of these fish was not fully evaluated. Hatching rate of the eggs collected was very low following both dry and wet incubation (5.04 and 3.79%, respectively). These results provide interesting information regarding the reproductive success of this species, and suggest that chromosomal abnormalities described may reduce the survival of H. sertanejo under natural conditions, limiting the perpetuation of this species, and emphasizing the need for more preservation efforts, including artificial propagation and gene banking.


Assuntos
Ciprinodontiformes , Animais , Brasil , Aberrações Cromossômicas , Ciprinodontiformes/fisiologia , Diploide , Reprodução/fisiologia
6.
Zygote ; 28(6): 470-481, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772964

RESUMO

The cause of hybrid sterility and inviability has not been analyzed in the fin-fish hybrid, although large numbers of hybridizations have been carried out. In this study, we produced allo-diploid hybrids by cross-fertilization between female goldfish (Carassius auratus) and male golden venus chub (Hemigrammocypris rasborella). Inviability of these hybrids was due to breakage of the enveloping layer during epiboly or due to malformation with serious cardiac oedema around the hatching stage. Spontaneous allo-triploid hybrids with two sets of the goldfish genome and one set of the golden venus chub genome developed normally and survived beyond the feeding stage. This improved survival was confirmed by generating heat-shock-induced allo-triploid hybrids that possessed an extra goldfish genome. When inviable allo-diploid hybrid cells were transplanted into goldfish host embryos at the blastula stage, these embryos hatched normally, incorporating the allo-diploid cells. These allo-diploid hybrid cells persisted, and were genetically detected in a 6-month-old fish. In contrast, primordial germ cells taken from allo-diploid hybrids and transplanted into goldfish hosts at the blastula stage had disappeared by 10 days post-fertilization, even under chimeric conditions. In allo-triploid hybrid embryos, germ cells proliferated in the gonad, but had disappeared by 10 weeks post-fertilization. These results showed that while hybrid germ cells are inviable even in chimeric conditions, hybrid somatic cells remain viable.


Assuntos
Carpa Dourada , Animais , Carpas , Diploide , Feminino , Células Germinativas , Masculino , Triploidia
7.
PLoS One ; 15(5): e0233885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32470029

RESUMO

In the Danio species, interspecific hybridization has been conducted in several combinations. Among them, only the hybrid between a zebrafish (D. rerio) female and a spotted danio (D. nigrofasciatus) male was reported to be fertile. However, beyond these investigations, by means of reproductive biology, gametes of the hybrid have also not been investigated genetically. For this study, we induced a hybrid of the D. rerio female and D. nigrofasciatus male in order to study its developmental capacity, reproductive performance and gametic characteristics. Its hybrid nature was genetically verified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the rhodopsin gene. Almost all the hybrids (36/37) were males, and only one was female. Developing oocytes were observed in the hybrid female, but ovulated eggs have not been obtained thus far. Microscopic observation revealed various head sizes of sperm in the hybrid males. Flow cytometry showed that the hybrid males generated aneuploid sperm with various ploidy levels up to diploidy. In backcrosses between D. rerio females and hybrid males, fertilization rates were significantly lower than the control D. rerio, and most resultant progeny with abnormal appearance exhibited various kinds of aneuploidies ranging from haploidy to triploidy, but only one viable progeny, which survived more than four months, was triploid. This suggested the contribution of fertile diploid sperm of the hybrid male to successful fertilization and development.


Assuntos
Aneuploidia , Fertilização/fisiologia , Hibridização Genética , Espermatozoides/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Cruzamentos Genéticos , DNA/genética , Feminino , Masculino , Ovário/citologia , Ploidias , Rodopsina/genética , Razão de Masculinidade , Espermatozoides/citologia
8.
Cytogenet Genome Res ; 158(1): 46-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31158836

RESUMO

Gonochoristic wild-type dojo loaches (Misgurnus anguillicaudatus) are diploid (2n = 50) and reproduce bisexually. However, sympatric clonal diploids generate unreduced diploid isogenic eggs that develop gynogenetically. Clone-origin triploidy arises following the incorporation of a haploid wild-type sperm nucleus into the diploid egg. Triploid females produce fertile haploid eggs by meiotic hybridogenesis, while triploid males are sterile. Clonal loaches arose from past hybridization event(s) between genetically diverse groups, A and B. Artificial hybrid females between the 2 groups produce unreduced and/or aneuploid eggs, but the hybrid males are sterile. In this study using FISH, we analyzed chromosome pairing in meiotic cells of clone-origin triploid and inter-group hybrid males to clarify the cytogenetic mechanisms underlying the male-specific sterility. We used a repetitive sequence probe to identify group B-derived chromosomes and a 5.8S + 28S rDNA probe to identify pairs of homologous chromosomes. We found that asynapsis and irregular synapsis occur in triploid and hybrid males containing 2 different genomes and that this may cause the formation of sterile germ cells. These results will help us to understand hybrid sterility from the viewpoint of synapsis behavior.


Assuntos
Cipriniformes/genética , Doenças dos Peixes/genética , Infertilidade Masculina/veterinária , Animais , Cromossomos/genética , Cromossomos/ultraestrutura , Cruzamentos Genéticos , DNA Ribossômico/genética , Feminino , Genoma , Hibridização in Situ Fluorescente , Infertilidade Masculina/genética , Masculino , Meiose/genética , Teratozoospermia , Triploidia
9.
Int J Dev Biol ; 63(1-2): 57-65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919916

RESUMO

The transplantation of primordial germ cells (PGCs) is a valuable tool for gene-banking and reconstitution by means of a germline chimera. For this technology, studies regarding developmental stages and traceability of PGCs are necessary. The objective of this study was to develop a micromanipulation procedure for the future establishment of cryobanks of PGCs in migratory characins. Incubation temperatures were evaluated at 22 ° C, 26 ° C, and 30 ° C in order to synchronize developmental stages. The highest hatching rates and the lowest abnormality rate arose at 26° C, which was considered to be the best incubation temperature. Enzymatic removal of the chorion was determined to be best using 0.05% pronase, in which the embryos presented better survival rates. In order to visualize PGCs in vivo, artificial GFP-nos1 3'UTR mRNA was injected and the migration route was observed in vivo as PGCs were visualized firstly at the segmentation stage (6 to 13 somites). The number of GFP positive cells ranged from 8 to 20 per embryo (mean of 13.8; n = 5). After hatching, GFP-positive cells increased to 14 to 27 embryos (mean of 19.8; n = 5). Visualization of the GFP-positive cells was possible at 10 days post hatching, and at this stage, the cells were positioned in the yolk extension region. This is the first report on PGC visualization in vivo in Neotropical fish; the obtained data provide information on the identification and migration of PGCs. The information presented in this work brings new insights in gene banking in Neotropical species and subsequent reconstitution through a germinal germline chimera.


Assuntos
Movimento Celular , Caraciformes/embriologia , Córion , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Células Germinativas/citologia , Micromanipulação , Animais , Embrião não Mamífero/fisiologia , Células Germinativas/fisiologia
10.
Int J Dev Biol ; 63(11-12): 597-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32149369

RESUMO

The goldfish (Carassius auratus auratus) is a useful species for embryonic micromanipulations because of its large egg size and wide temperature tolerance. Here, we describe in detail the rate of development and morphological characteristics of goldfish embryos incubated at temperatures between 10 °C and 30 °C. The cleavage speed increased rapidly as temperature increased. Synchronized cell divisions occurred at 131 min intervals at 10 °C, at 33 min intervals at 20 °C, and at 19 min intervals at 30 °C during the cleavage period. The rate of hatched abnormal embryos significantly increased at temperatures of 26 °C and above, while there was no change in the number of abnormal embryos at temperatures less than 24 °C. Moreover, the blastomeres around the center of the blastodisc rose in the direction of the animal pole at temperatures less than 14 °C. At the lower temperatures, clusters of maternally-supplied germplasm were visualized both at the ends of the first three cleavage furrows and at the border between the lower and upper tiers at the 16- to 32-cell stage, with injection of artificial mRNA and vasa in situ hybridization. This study showed that temperature affects not only developmental speed but also the shape of the blastodisc and the distribution of maternally-supplied materials in the blastodisc. By controlling the temperature, it is possible for researchers to prepare many stages of embryos and shapes of the blastodisc from a single batch of eggs.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Carpa Dourada/embriologia , Temperatura , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Movimento Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Fatores de Tempo
11.
Zygote ; 26(5): 408-416, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30370880

RESUMO

SummaryPolyspermy was initiated by microinjecting a multiple number of sperm into the activated and dechorionated eggs of dojo loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). A 10-nl sperm suspension from an albino (recessive trait) male (105, 106, 107 or 108 sperm ml -1) was microinjected into eggs from a wild-type female. Although the rates of embryos developing into the blastula stage in the injection group at the highest sperm concentration were similar to that of the control group, the hatching rates of the injection group were much lower. A large proportion of embryos that developed from the injected eggs was haploid and were mosaics containing haploid cells. Most of the haploid and mosaic embryos inherited only paternally derived alleles in the microsatellite markers (i.e. androgenesis was initiated by injecting multiple sperm). In contrast, some haploid embryos contained both paternal and maternal alleles despite haploidy, suggesting that they were mosaics consisting of cells with either paternal or maternal inheritance. The injected eggs displayed diploid, hypotriploid and triploid cells, all of which included both maternally and paternally derived alleles. One albino tetraploid with only paternal alleles was also observed from the injected eggs. These results suggested that part of the sperm microinjected into the ooplasm should form a male pronucleus/pronuclei, which could develop by androgenesis or could fuse with the female pronucleus/pronuclei. Therefore, microinjection of multiple sperm should be considered a potential technique to induce androgenesis and polyploidy.


Assuntos
Cipriniformes/embriologia , Fertilização in vitro/métodos , Poliploidia , Espermatozoides , Animais , Blástula/citologia , Blástula/fisiologia , Embrião não Mamífero/fisiologia , Feminino , Haploidia , Masculino , Microinjeções , Repetições de Microssatélites , Óvulo/fisiologia
12.
Chromosome Res ; 26(4): 243-253, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29882067

RESUMO

Wild-type dojo loach (Misgurnus anguillicaudatus) commonly reproduces bisexually as a gonochoristic diploid (2n = 50), but gynogenetically reproducing clonal diploid lines (2n = 50) exist in certain districts in Japan. Clones have been considered to develop from past hybridization event(s) between two genetically diverse groups, A and B, within the species. Fluorescence in situ hybridization analyses using the repetitive sequence "ManDra" as a probe clearly distinguished 25 chromosomes derived from group B out of a total of 50 diploid chromosomes of the clone, providing strong molecular cytogenetic evidence of its hybrid origin. In meiosis, diploid wild-type showed 25 bivalents, while diploid clones revealed 50 bivalents, indicating the presence of 100 chromosomes. In meiotic chromosome spreads in sex-reversed clonal males, ManDra signals were detected in 25 out of 50 bivalents, and only one out of two bivalents possessing major ribosomal RNA coding regions exhibited two positive ManDra signals. In clonal females, ManDra signals were detected in approximately 25 out of 50 bivalents. Thus, unreduced gametes should be generated by the pairing between sister chromosomes doubled from each ancestral chromosome from the different groups by premeiotic endomitosis. Sister chromosome pairing should assure production of unreduced isogenic clonal gametes due to the absence of the influence of recombination or crossing over.


Assuntos
Pareamento Cromossômico , Clonagem de Organismos/métodos , Reprodução Assexuada/genética , Animais , Cipriniformes , Diploide , Feminino , Peixes , Células Germinativas , Hibridização Genética , Hibridização in Situ Fluorescente , Masculino
13.
J Appl Genet ; 59(1): 91-97, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29313263

RESUMO

Rainbow trout (Oncorhynchus mykiss Walbaum) and sea trout (Salmo trutta Linnaeus, 1758) show large karyotypic differences and their hybrid offspring is not viable due to unstable karyotype and chromosome fragmentation. However, gametes from these two species were used to induce gynogenetic development. Rainbow trout eggs activated by UV-irradiated sea trout sperm were subjected to high hydrostatic pressure (HHP) shock to prevent release of the 2nd polar body (early shock) or to inhibit the first cleavage (late shock) in order to produce diploid meiotic gynogenotes and gynogenetic doubled haploids (DHs), respectively. Cytogenetic analysis proved fish that development was induced by the sea trout spermatozoa were rainbow trout. In turn, molecular examination confirmed homozygosity of the gynogenetic DHs. Presumed appearance of the recessive alleles resulted in lower survival of the gynogenetic DH larvae (~25%) when compared to survival of the heterozygous (meiotic) gynogenotes (c. 50%). Our results proved that genomic incompatibilities between studied trout species result in the hybrid unviability. However, artificial gynogenesis including activation of rainbow trout eggs with UV-irradiated sea trout spermatozoa was successfully induced. As both species are unable to cross, application of the UV-irradiated sea trout spermatozoa to activate rainbow trout development assures only maternal inheritance with no contamination by the residues of the paternal chromosomes.


Assuntos
Hibridização Genética , Oncorhynchus mykiss/genética , Óvulo , Salmonidae/genética , Animais , Feminino , Fertilização in vitro/veterinária , Haploidia , Cariótipo , Masculino , Reprodução Assexuada , Espermatozoides/efeitos da radiação
14.
Zygote ; 26(1): 89-98, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29334036

RESUMO

In fish, many factors can affect reproduction during in vitro fertilization, therefore determination of the factors that affect affecting gamete quality is needed. However, few studies have focused on gamete quality and the ploidy status. This study was conducted to elucidate whether oocyte storage can affect ploidy status, survival, and embryo viability in the characid species Astyanax altiparanae. Oocytes were stored in Dulbecco's phosphate-buffered saline (PBS) at 26°C, then aliquots were fertilized immediately after extrusion (control) and also after 60, 120, 180, and 240 min of storage. Fertilization and hatching rates were measured, and the developmental stages were analyzed at each stage before describing the main abnormalities. Ploidy status was analyzed by flow cytometry and blood smear. In the control group, 100% of the samples were diploid. After treatment for 60 min, 95.56 ± 4.44% samples were diploid and 4.44 ± 4.44% were triploid. After 120 min, 94.44 ± 9.62% of the samples was diploid and 5.56 ± 5.56% were triploid; 100% of the samples were diploid after 180 min and, after 240 min, there was no survival. In other treatments, the highest percentage of hatching was after 60 min (88.93 ± 5.15%; P = 0.015), and treatment with 180 min storage resulted in the highest percentage of abnormal larvae (95.76 ± 12.67%; P = 0.012). These results show that oocyte storage can affect ploidy status and may be an interesting parameter for analysis in studies on chromosome set manipulation and micromanipulation.


Assuntos
Characidae/embriologia , Oócitos/fisiologia , Ploidias , Animais , Embrião não Mamífero , Feminino , Fertilização in vitro , Larva , Masculino , Oócitos/ultraestrutura
15.
Zebrafish ; 15(1): 33-44, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29261026

RESUMO

Androgenesis is useful for induction of doubled haploids from male genetic resources and contributes to the restoration of individuals from cryopreserved sperm. Here, we determined the suitable conditions for egg in vitro preservation and the suitable dose of UV irradiation for genetic inactivation of the egg nucleus, and established an improved procedure for induction of androgenetic-doubled haploids in zebrafish. The suitable solution for egg preservation was evaluated by the fertilization rate using different types of solutions or conditions. Hank's solution with 0.5% bovine serum albumin (pH8.0) was suitable for the preservation of zebrafish eggs. In addition, we discovered an improvement of fertilization rates by temporal preservation of ovulated eggs in the suitable solution. UV irradiation of eggs at 50-75 mJ/cm2 induced haploid embryos. Microsatellite genotyping using eight loci revealed the paternity and homozygosity of the putative androgenetic doubled haploids. The yield rate of androgenetic doubled haploids, which were induced by UV irradiation and heat shock, ranged from 0.4% to 10.7%.


Assuntos
Criopreservação/métodos , Haploidia , Raios Ultravioleta , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Feminino , Fertilização , Masculino , Óvulo , Espermatozoides
16.
Theriogenology ; 108: 239-244, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253667

RESUMO

This work was aimed at developing an effective procedure to obtain sterile ideal host fish in mass scale with no endogenous germ cells in the germinal epithelium, owning permanent stem-cell niches able to be colonized by transplanted germ cells in surrogate technology experiments. Thus, triploids, diploid hybrids, and triploid hybrids were produced. To obtain hybrid offspring, oocytes from a single Astyanax altiparanae female were inseminated by sperm from five males (A. altiparanae, A. fasciatus, A. schubarti, Hyphessobrycon anisitsi, and Oligosarcus pintoi). Triploidization was conducted by inhibition of the second polar body release using heat shock treatment at 40 °C for 2 min. At 9-months of age, the offspring from each crossing was histologically evaluated to access the gonadal status of the fish. Variable morphological characteristics of the gonads were found in the different hybrids offspring: normal gametogenesis, gametogenesis without production of gametes, sterile specimens holding germ cells, and sterile specimens without germ cells, which were considered "ideal hosts". However, only in the hybrid derived from crossing between A. altiparanae and A. fasciatus, 100% of the individuals were completely sterile. Among them 83.3% of the male did not present germ cells inside germinal epithelium, having only somatic cells in the gonad. The other 16.7% also presented spermatogonia inside the niches. Such a methodology allows the production of sterile host in mass scale, opening new insights for application of surrogate technologies.


Assuntos
Peixes/fisiologia , Gametogênese , Células Germinativas/transplante , Ploidias , Animais , Cruzamento/métodos , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Feminino , Peixes/genética , Maturidade Sexual , Esterilização Reprodutiva/métodos , Esterilização Reprodutiva/veterinária
17.
Zygote ; 25(6): 731-739, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29191251

RESUMO

In fish with external fertilization, sperm must reach the oocyte through the micropyle to enter the cytoplasm. Fertilization success is then influenced by characteristics of oocytes or sperm. In this study, we evaluated oocyte morphology and sperm motility parameters and their effects on the inseminating dose in a teleost fish Astyanax altiparanae. Interestingly, we found one of the lowest yet described inseminating doses in teleosts (2390 spermatozoa oocyte-1 ml-1). Such a fertilization efficacy may be explained by the long duration of sperm motility (>75 s), the small oocyte diameter (695.119 µm), large micropyle diameter (7.57 µm), and the presence of grooves on the oocyte surface that guides spermatozoon to the fertilization area. Additionally, we have described for the first time a structure that combines grooves on the chorion surface and a ridge in the micropylar area.


Assuntos
Fertilização in vitro , Peixes/fisiologia , Óvulo/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Animais , Feminino , Masculino , Óvulo/citologia , Espermatozoides/citologia
18.
Front Genet ; 8: 131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993791

RESUMO

The production of triploid yellowtail tetra Astyanax altiparanae is a key factor to obtain permanently sterile individuals by chromosome set manipulation. Flow cytometric analysis is the main tool for confirmation of the resultant triploids individuals, but very few protocols are specific for A. altiparanae species. The current study has developed a protocol to estimate DNA content in this species. Furthermore, a protocol for long-term storage of dorsal fins used for flow cytometry analysis was established. The combination of five solutions with three detergents (Nonidet P-40 Substitute, Tween 20, and Triton X-100) at 0.1, 0.2, and 0.4% concentration was evaluated. Using the best solution from this first experiment, the addition of trypsin (0.125, 0.25, and 0.5%) and sucrose (74 mM) and the effects of increased concentrations of the detergents at 0.6 and 1.2% concentration were also evaluated. After adjustment of the protocol for flow cytometry, preservation of somatic tissue or isolated nuclei was also evaluated by freezing (at -20°C) and fixation in saturated NaCl solution, acetic methanol (1:3), ethanol, and formalin at 10% for 30 or 60 days of storage at 25°C. Flow cytometry analysis in yellowtail tetra species was optimized using the following conditions: lysis solution: 9.53 mM MgCl2.7H20; 47.67 mM KCl; 15 mM Tris; 74 mM sucrose, 0.6% Triton X-100, pH 8.0; staining solution: Dulbecco's PBS with DAPI 1 µg mL-1; preservation procedure: somatic cells (dorsal fin samples) frozen at -20°C. Using this protocol, samples may be stored up to 60 days with good accuracy for flow cytometry analysis.

19.
Zygote ; 25(5): 637-651, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28929986

RESUMO

Primordial germ cell (PGC) transplant is a promising tool in aquaculture; however, successful use of this technique requires in depth knowledge of the early stages of embryo and larval development. The aim of this study was to analyse the effect of different temperatures (22, 26, and 30°C) on the early development of B. amazonicus. The newly fertilized eggs were distributed into tanks with controlled temperature and oxygenation. Samples were collected at pre-established times and analysed under light and fluorescence microscopy. Temperature influenced the speed and duration of each stage of early development, including hatching time. The highest pronuclei fusion rate was observed 8 min post-fertilization (mpf) at 22 and 26°C, and 6 mpf at 30°C. The duration of the 512-1000 blastomeres phase during in the blastocyst stage was 1 h 30 min at 22°C, and 25 min at 26 and 30°C. Hatching occurred at 24 h 30 mpf at 22°C, 16 h post-fertilization (hpf) at 26°C, and 11 h 30 mpf at 30°C. The rate of morphologically normal larvae was 88.34% at 22°C, 90.49% at 26°C, and 73% at 30°C. Malformations of the head, yolk sac, heart, and tail were observed in all temperatures. Nevertheless, B. amazonicus embryos were able to develop satisfactory in all three temperatures tested. These results enable embryo manipulation at different temperatures to optimize the micromanipulation time of embryos and larvae for biotechnological studies.


Assuntos
Characidae/embriologia , Embrião não Mamífero/embriologia , Oócitos/fisiologia , Temperatura , Zigoto/fisiologia , Animais , Blástula/citologia , Blástula/fisiologia , Embrião não Mamífero/citologia , Feminino , Larva/citologia , Larva/fisiologia , Microscopia de Fluorescência , Oócitos/citologia , Fatores de Tempo , Saco Vitelino/fisiologia
20.
Zygote ; 25(4): 537-544, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28766472

RESUMO

This study aimed to examine the gonadal morphology of diploid and triploid fish through stereological analysis. Triploid individuals were obtained after temperature shock (40°C for 2 min) at 2 min post-fertilization and reared until 175 days post-fertilization (dpf). Intact eggs were used to obtain the diploids. Gonads were collected for histological analysis at 83, 114, 144 and 175 dpf. Diploid females and males presented normal oogenesis and spermatogenesis through all the experimental period. Conversely, stereological analysis revealed that triploid females were sterile and oogonia were the prevalent cell type in the ovaries. Triploid males presented increased amounts of spermatocyte cysts and a large area of lumen when compared with diploids and in addition the amount of spermatozoa was lower than that observed for diploids. However, some triploid males presented spermatogenesis similar to diploids. Therefore, we concluded that triploidization is an interesting alternative to produce sterile individuals in A. altiparanae.


Assuntos
Characidae/fisiologia , Diploide , Ovário/citologia , Testículo/citologia , Triploidia , Animais , Contagem de Células , Characidae/genética , Feminino , Masculino , Oócitos/fisiologia , Oogênese , Ovário/fisiologia , Espermatócitos , Espermatogênese , Testículo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...