Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38575766

RESUMO

PURPOSE: Extracellular vesicles (EVs) serve as carriers of intracellular factors with therapeutic effects, including tissue regeneration and attenuation of inflammatory responses. The majority of EVs in vivo are derived from skeletal muscle, which is reported to have anti-inflammatory effects. While high-intensity pulsed ultrasound (US) irradiation has been shown to promote EV secretion from myotubes, the impact of pulse repetition frequency, a US parameter affecting pulse length, on EV release remains unclear. This study aimed to investigate the impact of pulse repetition frequency of US on the release of EVs from myotubes. METHODS: C2C12 myoblasts were used in this study. After differentiation into C2C12 myotubes, US was performed for 5 min at an intensity of 3.0 W/cm2, duty cycle of 20%, acoustic frequency of 1 MHz, and different pulse repetition frequencies (100 Hz, 10 Hz, or 1 Hz). After 12 h, EVs and cells were collected for subsequent analyses. RESULTS: US did not cause a reduction in cell viability across all US groups compared to the control. The concentration of EVs was significantly higher in all US groups compared to the control group. In particular, the highest increase was observed in the 1-Hz group on EV concentration as well as intracellular Ca2+ level. CONCLUSION: This study investigated the effect of three different pulse repetition frequencies of US on the release of EVs from cultured myotubes. It is concluded that a low-pulse repetition frequency of 1 Hz is the most effective for enhancing EV release from cultured myotubes with pulsed ultrasound.

2.
Physiol Rep ; 12(8): e16019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627220

RESUMO

Inactivity can lead to muscle atrophy and capillary regression in skeletal muscle. Niacin (NA), known for inducing hypermetabolism, may help prevent this capillary regression. In this study involving adult female Sprague-Dawley rats, the animals were randomly assigned to one of four groups: control (CON), hindlimb unloading (HU), NA, and HU with NA supplementation (HU + NA). For a period of 2 weeks, the rats in the HU and HU + NA groups underwent HU, while those in the NA and HU + NA groups received NA (750 mg/kg) twice daily through oral administration. The results demonstrated that HU lowered capillary number, luminal diameter, and capillary volume, as well as decreased succinate dehydrogenase activity, slow fiber composition, and PGC-1α expression within the soleus muscle. However, NA supplementation prevented these alterations in capillary structure due to unloading by stimulating PGC-1α factors and inhibiting mitochondrial dysfunction. Therefore, NA supplementation could serve as a potential therapeutic approach for preserving the capillary network and mitochondrial metabolism of muscle fibers during periods of inactivity.


Assuntos
Niacina , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Niacina/farmacologia , Niacina/metabolismo , Niacina/uso terapêutico , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Suplementos Nutricionais , Elevação dos Membros Posteriores/métodos
3.
Am J Physiol Endocrinol Metab ; 326(3): E326-E340, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294696

RESUMO

This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.


Assuntos
Interleucina-15 , Músculo Esquelético , Camundongos , Masculino , Animais , Interleucina-15/genética , Interleucina-15/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia
4.
Elife ; 122023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054662

RESUMO

The regulation of inflammatory responses is an important intervention in biological function and macrophages play an essential role during inflammation. Skeletal muscle is the largest organ in the human body and releases various factors which mediate anti-inflammatory/immune modulatory effects. Recently, the roles of extracellular vesicles (EVs) from a large variety of cells are reported. In particular, EVs released from skeletal muscle are attracting attention due to their therapeutic effects on dysfunctional organs and tissues. Also, ultrasound (US) promotes release of EVs from skeletal muscle. In this study, we investigated the output parameters and mechanisms of US-induced EV release enhancement and the potential of US-treated skeletal muscle-derived EVs in the regulation of inflammatory responses in macrophages. High-intensity US (3.0 W/cm2) irradiation increased EV secretion from C2C12 murine muscle cells via elevating intracellular Ca2+ level without negative effects. Moreover, US-induced EVs suppressed expression levels of pro-inflammatory factors in macrophages. miRNA sequencing analysis revealed that miR-206-3p and miR-378a-3p were especially abundant in skeletal myotube-derived EVs. In this study we demonstrated that high-intensity US promotes the release of anti-inflammatory EVs from skeletal myotubes and exert anti-inflammatory effects on macrophages.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Anti-Inflamatórios , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ondas Ultrassônicas
5.
PLoS One ; 18(11): e0289086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011220

RESUMO

Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo dos Lipídeos , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Campos Eletromagnéticos , Camundongos Endogâmicos C57BL , Sêmen/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Fígado/metabolismo
6.
Sci Rep ; 13(1): 17819, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857669

RESUMO

Macrophages play an important role as effector cells in innate immune system. Meanwhile, macrophages activated in a pro-inflammatory direction alter intracellular metabolism and damage intact tissues by increasing reactive oxygen species (ROS). Electrical stimulation (ES), a predominant physical agent to control metabolism in cells and tissues, has been reported to exert anti-inflammatory effect on immune cells. However, the mechanism underlying the anti-inflammatory effects by ES is unknown. This study aimed to investigate the effect of ES on metabolism in glycolytic-tricarboxylic acid cycle (TCA) cycle and inflammatory responses in macrophages. ES was performed on bone marrow-derived macrophages and followed by a stimulation with LPS. The inflammatory cytokine expression levels were analyzed by real-time polymerase chain reaction and ELISA. ROS production was analyzed by CellRox Green Reagent and metabolites by capillary electrophoresis-mass spectrometry. As a result, ES significantly reduced proinflammatory cytokine expression levels and ROS generation compared to the LPS group and increased glucose-1-phosphate, a metabolite of glycogen. ES also increased intermediate metabolites of the pentose phosphate pathway (PPP); ribulose-5-phosphate, rebose-5 phosphate, and nicotinamide adenine dinucleotide phosphate, a key factor of cellular antioxidation systems, as well as α-Ketoglutarate, an anti-oxidative metabolite in the TCA cycle. Our findings imply that ES enhanced NADPH production with enhancement of PPP, and also decreased oxidative stress and inflammatory responses in macrophages.


Assuntos
Lipopolissacarídeos , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , Estimulação Elétrica , Fosfatos/metabolismo
7.
Front Immunol ; 14: 1099799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936950

RESUMO

Introduction: Macrophages play an important role in the innate immunity. While macrophage inflammation is necessary for biological defense, it must be appropriately controlled. Extracellular vesicles (EVs) are small vesicles released from all types of cells and play a central role in intercellular communication. Skeletal muscle has been suggested to release anti-inflammatory factors, but the effect of myotube-derived EVs on macrophages is unknown. As an anti-inflammatory mechanism of macrophages, the immune responsive gene 1 (IRG1)-itaconate pathway is essential. In this study, we show that skeletal muscle-derived EVs suppress macrophage inflammatory responses, upregulating the IRG1-itaconate pathway. Methods: C2C12 myoblasts were differentiated into myotubes and EVs were extracted by ultracentrifugation. Skeletal myotube-derived EVs were administered to mouse bone marrow-derived macrophages, then lipopolysaccharide (LPS) stimulation was performed and inflammatory cytokine expression was measured by RT-qPCR. Metabolite abundance in macrophages after addition of EVs was measured by CE/MS, and IRG1 expression was measured by RT-PCR. Furthermore, RNA-seq analysis was performed on macrophages after EV treatment. Results: EVs attenuated the expression of LPS-induced pro-inflammatory factors in macrophages. Itaconate abundance and IRG1 expression were significantly increased in the EV-treated group. RNA-seq analysis revealed activation of the PI3K-Akt and JAK-STAT pathways in macrophages after EV treatment. The most abundant miRNA in myotube EVs was miR-206-3p, followed by miR-378a-3p, miR-30d-5p, and miR-21a-5p. Discussion: Skeletal myotube EVs are supposed to increase the production of itaconate via upregulation of IRG1 expression and exhibited an anti-inflammatory effect in macrophages. This anti-inflammatory effect was suggested to involve the PI3K-Akt and JAK-STAT pathways. The miRNA profiles within EVs implied that miR-206-3p, miR-378a-3p, miR-30d-5p, and miR-21a-5p may be responsible for the anti-inflammatory effects of the EVs. In summary, in this study we showed that myotube-derived EVs prevent macrophage inflammatory responses by activating the IRG1-itaconate pathway.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Vesículas Extracelulares/metabolismo
8.
Life (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836764

RESUMO

Mild hyperbaric oxygen (HBO) enhances oxygen absorption in blood, relieving fatigue without causing oxidative stress. The benefits of mild HBO have been recognized in the treatment of lifestyle-related diseases and hypertension, but no research has been conducted on its effects on immunity. The aim of the present study is to investigate the effect of mild HBO on natural killer (NK) cells and cytokines in healthy young women. This crossover randomized control trial was conducted with 16 healthy young women. Participants were randomly exposed to normobaric oxygen (NBO; 1.0 atmospheres absolute (ATA), 20.8% oxygen) and mild HBO conditions (1.4 ATA, 35-40% oxygen, injected 18L oxygen per minute) in a hyperbaric oxygen chamber for 70 min. Heart rate, parasympathetic activity, NK cell count, interleukin (IL)-6, IL-12p70 and derivatives of reactive oxygen metabolites (d-ROMs) were measured before and after both exposures. In the NBO condition, parasympathetic activity remained unchanged, whereas after mild HBO exposure, parasympathetic activity was significantly increased. NK cells remained unchanged after NBO exposure, while NK cells were increased after exposure to mild HBO. Exposure to mild HBO did not increase d-ROM values, IL-6 and IL-12p70 protein levels. These findings suggest that exposure to mild HBO can be a useful protocol to increase NK cells by regulating parasympathetic activity via increasing oxygen delivery.

9.
Int J Low Extrem Wounds ; : 15347346221148456, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594523

RESUMO

High plantar flexor moment and limited ankle mobility are known to cause high plantar pressure under the forefoot. Stretching is an effective physical therapy for the limited ankle range of motion (ROM), and electrical stimulation is used to regulate the activity of antagonistic muscle via the action of reciprocal inhibition. Additionally, stretching paired with electrical stimulation has been reported to improve the limited ROM significantly. This study aims to investigate the influences of stretching on triceps surae (STR), electrical stimulation to tibialis anterior (ES), and the combination (ES+STR) on the ROM, kinematic parameters, and plantar pressure distribution during gait in patients with diabetes mellitus. Planter pressure and other parameters were measured before and after the intervention of ES, STR, ES+STR, or the rest sitting on the bed (CON) for 10 min. Pressure time integral under the medial forefoot decreased in the ES+STR compared to CON (P< .05). Interestingly, ES+STR increased passive and dynamic ROM on ankle dorsiflexion during gait and increased the lateral center of pressure excursion (P < .05). Furthermore, these changes were followed by decreased contact duration under the medial forefoot (P < .05). The combined therapy improves ankle mobility during gait and reduces the contact duration and the plantar pressure under the medial forefoot in patients with diabetes mellitus.

10.
Nutrients ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678234

RESUMO

This study aimed to investigate the effects of Brazilian propolis on body fat mass and levels of adiponectin and reactive oxygen species among community-dwelling elderly females. This was a double-blind randomized placebo-controlled trial. Altogether, 78 females aged 66-84 years were randomly assigned to the propolis (PRO; n = 39) or placebo (PLA; n = 39) group. For 12 weeks, the PRO group were given three capsules containing 227 mg of propolis twice a day. Meanwhile, the PLA group were given daily placebo capsules. Of 78 participants, 53 (PLA group: n = 28, PRO group: n = 25) completed the study. Although no changes were observed in absolute or relative fat mass in the PLA group, they showed a significant decline in the PRO group. The level of serum adiponectin in the PLA group did not change, although that of the PRO group significantly increased. The level of d-ROMs in the PLA group significantly increased, whereas that of the PRO group significantly decreased. The serum SOD activity in the PLA group significantly decreased, whereas that of the PRO group tended to increase. These results suggest that propolis supplementation may decrease body fat mass and oxidative stress among community-dwelling elderly females.


Assuntos
Própole , Idoso , Feminino , Humanos , Adiponectina , Tecido Adiposo , Brasil , Suplementos Nutricionais , Vida Independente , Estresse Oxidativo , Poliésteres , Própole/farmacologia , Própole/uso terapêutico , Idoso de 80 Anos ou mais
11.
Int J Low Extrem Wounds ; 22(3): 548-554, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34255569

RESUMO

High plantar pressure is a risk factor for diabetic foot ulcers, and it is known that restriction of ankle dorsiflexion range of motion (ROM) causes high plantar pressure. Stretching is a non-invasive and general means to improve ROM; however, the effect of stretching on the ROM and plantar pressure has not been clarified in patients with diabetes mellitus. We aimed to study the effects of intermittent weight-bearing stretching on ankle dorsiflexion ROM and plantar pressure during gait in patients with diabetes mellitus. Seven patients with diabetes mellitus participated, and their triceps surae was stretched using weight-bearing stretching with a stretch board. Five minutes of stretching was performed 4 times with a rest interval of 30 s. Ankle dorsiflexion ROM was measured with the knee flexed and extended. Peak pressure and pressure-time integral during gait were measured and calculated for the rearfoot, midfoot, forefoot, and total plantar surface before and after stretching. Ankle dorsiflexion ROM with the knee extended or bent increased significantly after stretching (P < .05). Peak pressure and the pressure-time integral decreased significantly, especially in the forefoot (P < .01), and these also decreased significantly in the total plantar surface (P < .05). The duration of foot-flat decreased after stretching (P < .05). Weight-bearing stretching improved ankle dorsiflexion ROM and reduced plantar pressure during gait. These results suggest that weight-bearing calf stretching may be an effective means to prevent and treat diabetic foot ulcers.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Tornozelo , Pé Diabético/terapia , Articulação do Tornozelo , Amplitude de Movimento Articular , Marcha , Suporte de Carga
12.
Acta Histochem Cytochem ; 56(6): 95-104, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38318105

RESUMO

Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36294075

RESUMO

Oxidative stress is associated with deterioration of endurance and muscle strength, which are mostly accompanied by aging. Astaxanthin supplement has excellent antioxidant activity without any pro-oxidative properties. In this study, we investigated how astaxanthin supplementation affects walking endurance and muscle strength in nursing home residents. Healthy elderly individuals (age: 67 to 94) were divided into two groups: 13 subjects received a daily dose of 24 mg of astaxanthin for 16 weeks (astaxanthin group) and 11 subjects received a placebo (placebo group). These subjects were compared using body component measurements, serum d-ROM levels, the distance of 6-min walking, blood lactate levels after the 6-min walking test, and muscle strength. After supplementation, the levels of d-ROMs and blood lactate after the 6-min walking test in the astaxanthin group significantly decreased compared with the placebo group (p < 0.05). Additionally, the walking distance was significantly higher in the astaxanthin group than in the placebo group (p < 0.05), despite a significant reduction in lactate levels after 6-MWT (p < 0.05). However, no significant intergroup differences were observed in muscle mass and strength. Astaxanthin supplement for 16 weeks is effective to increase the endurance capacity of the elderly. Astaxanthin supplement suppresses d-ROMs at rest and lactic acid production after the 6-min walk test. In contrast, astaxanthin supplement did not show significant intergroup differences in the muscle mass and strength. Therefore, the effect was most likely accompanied by an increase in endurance instead of an increase in muscle strength.


Assuntos
Antioxidantes , Caminhada , Humanos , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/farmacologia , Estresse Oxidativo , Suplementos Nutricionais , Ácido Láctico , Casas de Saúde
14.
J Inflamm Res ; 15: 2387-2395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444446

RESUMO

Background: Itaconate is a key metabolite in the innate immune system and exerts strong anti-inflammatory effects in macrophages. For the production of itaconate in macrophages, immune-responsive gene 1 (IRG1) is an imperative enzyme, and activating the IRG1-itaconate pathway is reported to alleviate inflammatory diseases by upregulating nuclear factor-erythroid 2-related factor 2 (NRF2). However, there are very few reports on strategies to increase itaconate production. Ultrasound therapy is a widely used intervention for anti-inflammatory and soft-tissue regeneration purposes. Here we show the effect of ultrasound irradiation on the production of itaconate in macrophages. Methods: Murine bone marrow-derived macrophages (BMDMs) were exposed to pulsed ultrasound (3.0 W/cm2) for 5 minutes. Three hours after irradiation, the intracellular levels of metabolites and mRNA expression levels of Irg1 and Nrf2 were measured using CE/MS and qPCR, respectively. To evaluate macrophage inflammation status, 3 h after irradiation, the cells were stimulated with 100 ng/mL lipopolysaccharide (LPS) for 1.5 h and the mRNA expression levels of pro-inflammatory factors (Il-1ß, Il-6, and Tnf-α) were measured. Student's t-test, one-way ANOVA and Tukey's multiple comparison test were used for statistical processing, and the significance level was set to less than 5%. Results: Ultrasound irradiation significantly increased the intracellular itaconate level and the expression levels of Irg1 and Nrf2 in BMDMs. Upregulation of Il-1ß, Il-6, and Tnf-α by LPS was significantly suppressed in BMDMs treated with ultrasound. Ultrasound irradiation did not affect cell viability and apoptosis. Conclusion: Ultrasound irradiation induces the production of itaconate by upregulating Irg1 expression and attenuates inflammatory responses in macrophages via Nrf2. These results suggest that ultrasound is a potentially useful method to increase itaconate production in macrophages.

15.
SAGE Open Med ; 10: 20503121221085097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310932

RESUMO

Objectives: Tuning fork vibration sensation testing is widely used as a diagnostic test to detect diabetic neuropathy. However, evidence-based literature indicates that reliability between examiners is low. Attaching isosceles triangle diagrams on tuning forks lowers the discrepancy between examiners. This study aimed to analyze the relationship between vibration sensation measurement using an improved tuning fork and the presence of callus and wound development in patients with diabetic peripheral neuropathy. Methods: Participants included 56 general older adults and 52 patients with diabetic peripheral neuropathy. The methods included confirmation of the presence or absence of callus, range of motion of the ankle and the first metatarsophalangeal joint, vibratory sensitivity of the medial malleolus and the dorsal aspect of the first distal phalanx using an improved tuning fork, and touch-pressure sensitivity of the plantar aspect of the hallux. Patients with diabetic peripheral neuropathy were followed up for 3 years to check for the presence or absence of wounds. Results: When compared with the general older adults, the patients with diabetic peripheral neuropathy had significantly lower touch-pressure sensitivity (p < 0.01), vibratory sensitivity at the distal phalanx (p < 0.01) and medial malleolus (p < 0.01), ankle dorsiflexion range of motion (p < 0.01), and metatarsophalangeal joint extension range of motion (p < 0.01). The area under the receiver operating characteristic curve with callus formation was 0.93 for the medial malleolus and 0.96 for the distal phalanx, indicating that the accuracy of the distal phalanx was higher (p < 0.01) than the medial malleolus. According to the Cox proportional hazard analysis, the vibratory sensitivity of the distal phalanx was a significant risk factor for ulcer development (p < 0.05). Conclusion: These findings suggest that the vibration sensation test, which we improved via the technique described in this study, is useful for predicting the occurrence of callus and ulcer.

16.
Nutrients ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35268053

RESUMO

Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2'-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.


Assuntos
Taninos Hidrolisáveis , Myrtaceae/química , Extratos Vegetais , Células Satélites de Músculo Esquelético , Animais , Células Cultivadas , Taninos Hidrolisáveis/farmacologia , Extratos Vegetais/farmacologia , Ratos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo
17.
J Sports Med Phys Fitness ; 62(12): 1600-1604, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35179329

RESUMO

BACKGROUND: Exposure to mild hyperbaric oxygen (HBO) increases blood oxygenation by dissolving oxygen into blood plasma and increased oxygen bound to hemoglobin in red blood cells. This research is an attempt to provide insight into the responses of exposure to mild HBO on microcirculation in peripheral tissues. METHODS: Fifteen healthy individuals were exposed to normobaric oxygen (1.00 ATA, 20.9% oxygen, NBO) and mild HBO (1.4 ATA, 35-39.5% oxygen) in a mild HBO chamber for 70 minutes under each condition. Peripheral oxygen saturation (SpO2), heart rate, blood flow in skin, and hemodynamics in capillaries of finger nailfold were measured under both exposures. RESULTS: The value of SpO2 was increased from 98% to 100% after mild HBO exposure although that of SpO2 under NBO was unaltered (P=0.000; P=0.818). Heart rate was decreased after exposure to the mild HBO although that unchanged under the NBO (P=0.000; P=0.706). The mean value of high frequency power in heart rate variability increased after exposure to the mild HBO (P=0.045). Average blood velocity and flow rate in capillaries of finger nailfold were not increased under to NBO whereas those were significantly increased from 92 µm/s to 126 µm/s (P=0.040, P=0.000), and 12247 µm/s to 20926 µm/s after exposure to mild HBO (P<0.05), (P=0.002, P=0.875), respectively. CONCLUSIONS: These results indicate that exposure to mild HBO increases blood flow in the capillaries of peripheral tissues by regulating parasympathetic nerve activities through increasing oxygen delivery, oxygen bound to hemoglobin in red blood cells and dissolved oxygen content in plasma.


Assuntos
Oxigenoterapia Hiperbárica , Humanos , Microcirculação , Oxigenoterapia Hiperbárica/métodos , Projetos Piloto , Voluntários Saudáveis , Oxigênio , Hemoglobinas
18.
J Med Ultrason (2001) ; 49(2): 125-132, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35089476

RESUMO

PURPOSE: Ultrasound (US) has been reported to improve the permeability of cell membranes to pharmaceuticals by causing cavitation. Astaxanthin (AX) potently terminates the induction of inflammation, but it has low oral bioavailability, which limits its incorporation in local cells and organs and its therapeutic potential. In this study, we aimed to investigate the contribution of US to AX incorporation to compensate for the limited incorporation of AX, and regulation of the pro-inflammatory factor interleukin-1ß (IL-1ß) by AX. METHODS: Murine bone marrow-derived macrophages were stimulated by lipopolysaccharide (LPS). After 2 h, cells were treated with 10 µM AX and/or pulsed high-intensity US irradiation. The cells were then incubated for another 3 h and harvested. AX incorporation in cells was measured by absorbance, and the expression of IL-1ß was measured by qPCR. All values are expressed as means ± standard error of the mean. RESULTS: The combination of AX and US significantly increased AX incorporation in cells compared to AX alone (p < 0.05). In addition, this combination further suppressed the expression of IL-1ß compared to AX alone (p < 0.05). CONCLUSION: Pulsed high-intensity US irradiation combined with AX treatment promoted AX incorporation in cells and enhanced the anti-inflammatory effect on macrophages.


Assuntos
Lipopolissacarídeos , Macrófagos , Animais , Humanos , Inflamação/diagnóstico por imagem , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Xantofilas/metabolismo , Xantofilas/farmacologia , Xantofilas/uso terapêutico
19.
Muscle Nerve ; 65(3): 350-360, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957570

RESUMO

INTRODUCTION/AIMS: Skeletal muscle capillaries regress with disuse; however, information on time-dependent changes in the expression of pro- and anti-angiogenic factors in disused muscle is limited. This study aimed to clarify time-dependent changes in skeletal muscle capillarization, pro-angiogenic vascular endothelial growth factor-A (VEGF-A), and anti-angiogenic thrombospondin-1 (TSP-1) in the soleus muscle of hindlimb unloaded rat. METHODS: Eight-week-old male Sprague Dawley rats were randomly divided into four groups corresponding to different hindlimb unloading (HU) duration at 0, 1, 2, and 3 wk. RESULTS: Muscle atrophy and capillary regression worsened in the soleus muscle with longer periods of HU. The VEGF-A protein expression level was lower at week 1 than at week 0. In addition, the value at week 3 was also lower than those at weeks 0, 1, and 2. The TSP-1 protein expression level was higher at week 1 than that at week 0 but was similar at weeks 2 and 3. Moreover, reactive oxygen species, assessed by dihydroethidium fluorescence intensity on cryosection, were higher at weeks 2 and 3 than that at week 0. DISCUSSION: Depending on the HU period, VEGF-A and TSP-1 showed different expression patterns. In the early HU phase, TSP-1 may play an important role in capillary regression. However, when HU extends for a longer period, decreased VEGF-A, and/or increased oxidative stress may be more involved in capillary regression.


Assuntos
Capilares , Elevação dos Membros Posteriores , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Capilares/patologia , Membro Posterior , Elevação dos Membros Posteriores/fisiologia , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ratos , Ratos Sprague-Dawley
20.
Biomed Res ; 42(6): 257-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34937825

RESUMO

Inactivity causes muscle atrophy and capillary regression in skeletal muscle. Chlorogenic acid has an antioxidant capacity and may prevent capillary regression. Therefore, the protective effects of chlorogenic acid on inactivity-induced capillary regression in rat soleus muscle were investigated. Twenty male Wistar rats were randomly divided into four groups: control (CON), chlorogenic acid supplementation (CGA), 2-week hindlimb unloading (HU), 2-week hindlimb unloading plus chlorogenic acid supplementation (HU+CGA). The rats in CGA and HU+CGA groups were orally administrated chlorogenic acid (850 mg/kg/day). Unloading resulted in a decrease in capillary number, oxidative capacity, and an increase in oxidative stress of the soleus muscle, whereas chlorogenic acid supplementation prevented capillary and metabolic changes resulting from unloading by reducing oxidative stress. In conclusion, chlorogenic acid supplementation may qualify as an effective treatment to reduce capillary regression in skeletal muscle caused by disuse muscle atrophy.


Assuntos
Ácido Clorogênico , Elevação dos Membros Posteriores , Animais , Capilares , Ácido Clorogênico/farmacologia , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...