Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Diabetes Investig ; 15(4): 437-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151917

RESUMO

AIMS/INTRODUCTION: Endogenous insulin secretion could be recovered by improving hyperglycemia in patients with type 2 diabetes. This study aimed to investigate the association between short-term recovery of insulin secretion during hospitalization and clinical background or future glycemic control in patients with type 2 diabetes. MATERIALS AND METHODS: A total of 127 patients with type 2 diabetes were included. The recovery of endogenous insulin secretion was determined using the following indices: index A: fasting C-peptide index (CPI) at discharge - fasting CPI on admission; index B: postprandial CPI at discharge - postprandial CPI on admission; and index C: Δ C-peptide immunoreactivity (CPR) (postprandial CPR - fasting CPR) at discharge - ΔCPR on admission. We examined the associations of each index with clinical background and future glycemic control measured by glycosylated hemoglobin and continuous glucose monitoring. RESULTS: Using index A and B, the age was significantly younger, whereas BMI and visceral fat area were significantly higher in the high-recovery group than in the low-recovery group. Changes in glycosylated hemoglobin levels were significantly greater at 6 and 12 months in the high-recovery group in the analysis of index C. The receiver operating characteristic curve analysis identified the index B and index C as indicators to predict glycosylated hemoglobin <7.0% at 6 months after discharge. Furthermore, index C was positively correlated with the time in the target glucose range, and inversely correlated with the standard deviation of glucose at 3 and 12 months after discharge. CONCLUSIONS: Short-term recovery of insulin secretion in response to a meal during hospitalization, evaluated with the index-C, might predict future glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Secreção de Insulina , Insulina/metabolismo , Hemoglobinas Glicadas , Peptídeo C/metabolismo , Glicemia/análise , Automonitorização da Glicemia , Controle Glicêmico , Glucose , Período Pós-Prandial/fisiologia
2.
Mol Metab ; 77: 101797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709134

RESUMO

OBJECTIVE: Polyphenols have health-promoting effects, such as improving insulin resistance. Isoxanthohumol (IX), a prenylated flavonoid found in beer hops, has been suggested to reduce obesity and insulin resistance; however, the mechanism remains unknown. METHODS: High-fat diet-fed mice were administered IX. We analyzed glucose metabolism, gene expression profiles and histology of liver, epididymal adipose tissue and colon. Lipase activity, fecal lipid profiles and plasma metabolomic analysis were assessed. Fecal 16s rRNA sequencing was obtained and selected bacterial species were used for in vitro studies. Fecal microbiota transplantation and monocolonization were conducted to antibiotic-treated or germ-free (GF) mice. RESULTS: The administration of IX lowered weight gain, decreased steatohepatitis and improved glucose metabolism. Mechanistically, IX inhibited pancreatic lipase activity and lipid absorption by decreasing the expression of the fatty acid transporter CD36 in the small intestine, which was confirmed by increased lipid excretion in feces. IX administration increased markers of intestinal barrier function, including thickening the mucin layer and increasing caludin-1, a tight-junction related protein in the colon. In contrast, the effects of IX were nullified by antibiotics. As revealed using 16S rRNA sequencing, the microbial community structure changed with a significant increase in the abundance of Akkermansia muciniphila in the IX-treated group. An anaerobic chamber study showed that IX selectively promoted the growth of A. muciniphila while exhibiting antimicrobial activity against some Bacteroides and Clostridium species. To further explore the direct effect of A. muciniphila on lipid and glucose metabolism, we monocolonized either A. muciniphila or Bacteroides thetaiotaomicron to GF mice. A. muciniphila monocolonization decreased CD36 expression in the jejunum and improved glucose metabolism, with decreased levels of multiple classes of fatty acids determined using plasma metabolomic analysis. CONCLUSIONS: Our study demonstrated that IX prevents obesity and enhances glucose metabolism by inhibiting dietary fat absorption. This mechanism is linked to suppressing pancreatic lipase activity and shifts in microbial composition, notably an increase in A. muciniphila. These highlight new treatment strategies for preventing metabolic syndrome by boosting the gut microbiota with food components.


Assuntos
Resistência à Insulina , Animais , Camundongos , RNA Ribossômico 16S/genética , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Verrucomicrobia/genética , Verrucomicrobia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Glucose/metabolismo , Lipase
3.
Mol Genet Metab ; 140(3): 107691, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660570

RESUMO

Mitochondrial DNA m.3243A > G mutation causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and its associated multi-organ disorders, including diabetes. To clarify associations between m.3243A > G organ heteroplasmy and clinical phenotypes, including the age at death, we combined genetic and pathological examinations from seven unreported and 36 literature cases of autopsied subjects. Clinical characteristics of subjects were as follows: male, 13; female, 28; unknown, 2; the age at death, 36.9 ± 20.2 [4-82] years; BMI, 16.0 ± 2.9 [13.0-22.3]; diabetes, N = 21 (49%), diabetes onset age 38.6 ± 14.2 years; deafness, N = 27 (63%); stroke-like episodes (StLEp), N = 25 (58%); congestive heart failure (CHF), N = 15 (35%); CHF onset age, 51.3 ± 14.5 years. Causes of death (N = 32) were as follows: cardiac, N = 13 (41%); infection, N = 8 (25%); StLEp, N = 4 (13%); gastrointestinal, N = 4 (13%); renal, N = 2 (6%); hepatic, N = 1 (2%). High and low heteroplasmies were confirmed in non-regenerative and regenerative organs, respectively. Heteroplasmy of the liver, spleen, leukocytes, and kidney for all subjects was significantly associated with the age at death. Furthermore, the age at death was related to juvenile-onset (any m.3243A > G-related symptoms appeared before 20) and stroke-like episodes. Multiple linear regression analysis with the age at death as an objective variable showed the significant contribution of liver heteroplasty and juvenile-onset to the age at death. m.3243A > G organ heteroplasmy levels, particularly hepatic heteroplasmy, are significantly associated with the age at death in deceased cases.


Assuntos
Diabetes Mellitus , Síndrome MELAS , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Idoso de 80 Anos ou mais , Heteroplasmia , DNA Mitocondrial/genética , Mutação , Acidente Vascular Cerebral/complicações , Fígado/patologia , Síndrome MELAS/genética
4.
Metabolism ; 145: 155591, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230214

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/farmacologia , Lipogênese/fisiologia , Fígado/metabolismo , Modelos Genéticos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
5.
Diabetol Int ; 14(2): 125-133, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090127

RESUMO

Adipose tissue-resident macrophages (ATMs) are reported to be important for maintaining adipose tissue remodeling and homeostasis. ATMs were classified for the first time in 2007 into the M1 and M2 types. This theory suggests that in the non-obese adipose tissue, the anti-inflammatory, alternatively activated macrophages (AAMs) predominate, and regulate tissue homeostasis, remodeling, and insulin sensitivity. On the other hand, classically activated M1-type macrophages increase rapidly in obesity, secrete inflammatory cytokines, such as TNFα and IL-6, and induce insulin resistance. In recent years, experimental findings that cannot be explained by this theory have been clarified one after another and the theory is being reconsidered. In this review, based on recent findings, we summarize reports on the novel metabolic regulatory functions of ATMs beyond the M1/M2 paradigm.

6.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747758

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform increases endoplasmic reticulum (ER) stress in a dose dependent fashion, so when fructose is coupled with a HFD intake it leads to unresolved ER stress. Conversely, a liver-specific knockdown of KHK in C57BL/6J male mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in genetically obesity ob/ob, db/db and lipodystrophic FIRKO male mice, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.

7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835461

RESUMO

The potential roles of the gut microbiota in the pathogenesis of non-alcoholic fatty liver disease, including non-alcoholic steatohepatitis (NASH), have attracted increased interest. We have investigated the links between gut microbiota and NASH development in Tsumura-Suzuki non-obese mice fed a high-fat/cholesterol/cholate-based (iHFC) diet that exhibit advanced liver fibrosis using antibiotic treatments. The administration of vancomycin, which targets Gram-positive organisms, exacerbated the progression of liver damage, steatohepatitis, and fibrosis in iHFC-fed mice, but not in mice fed a normal diet. F4/80+-recruited macrophages were more abundant in the liver of vancomycin-treated iHFC-fed mice. The infiltration of CD11c+-recruited macrophages into the liver, forming hepatic crown-like structures, was enhanced by vancomycin treatment. The co-localization of this macrophage subset with collagen was greatly augmented in the liver of vancomycin-treated iHFC-fed mice. These changes were rarely seen with the administration of metronidazole, which targets anaerobic organisms, in iHFC-fed mice. Finally, the vancomycin treatment dramatically modulated the level and composition of bile acid in iHFC-fed mice. Thus, our data demonstrate that changes in inflammation and fibrosis in the liver by the iHFC diet can be modified by antibiotic-induced changes in gut microbiota and shed light on their roles in the pathogenesis of advanced liver fibrosis.


Assuntos
Antibacterianos , Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Vancomicina , Animais , Camundongos , Antibacterianos/farmacologia , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vancomicina/farmacologia
8.
J Endocrinol ; 256(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458804

RESUMO

The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.


Assuntos
Microbioma Gastrointestinal , Humanos , Disbiose/metabolismo , Disbiose/microbiologia , Bactérias , Trato Gastrointestinal/metabolismo , Bacteroidetes/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499635

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an emerging worldwide health concern. The disease may involve immune cells including T cells, but little is known about the role(s) of the innate-like T cells in the liver. Furthermore, the most abundant innate-like T cells in the human liver are mucosal-associated invariant T (MAIT) cells, but the involvement of MAIT cells in NAFLD remains largely unexplored because of their paucity in mice. In this study, we used a novel mouse line, Vα19, in which the number of MAIT cells is equivalent to or greater than that in humans. Compared with the control mice, Vα19 mice fed a high-fat diet (HFD) exhibited a reduction in lipid accumulation, NAFLD activity score, and transcripts relevant to lipogenesis. In addition, serum triglyceride and non-esterified fatty acids were lower in Vα19 mice fed normal chow or HFD. In contrast, the Vα19 mice showed little or no change in glucose tolerance, insulin sensitivity, inflammation in adipose tissues, or intestinal permeability compared with the controls, irrespective of diet. These results suggest that the presence of MAIT cells is associated with reduced lipogenesis and lipid accumulation in the liver; however, further studies are needed to clarify the role of MAIT cells in hepatic lipid metabolism.


Assuntos
Células T Invariantes Associadas à Mucosa , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Ácidos Graxos não Esterificados/metabolismo
10.
Nat Commun ; 13(1): 7058, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411280

RESUMO

Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-ß1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-ß signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.


Assuntos
Adipogenia , Folistatina , Animais , Camundongos , Macrófagos , Camundongos Transgênicos , Músculos , Receptor de Manose/imunologia
11.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955470

RESUMO

This study demonstrates that the luciferin of the firefly squid Watasenia scintillans, which generally reacts with Watasenia luciferase, reacted with human albumin to emit light in proportion to the albumin concentration. The luminescence showed a peak wavelength at 540 nm and was eliminated by heat or protease treatment. We used urine samples collected from patients with diabetes to quantify urinary albumin concentration, which is essential for the early diagnosis of diabetic nephropathy. Consequently, we were able to measure urinary albumin concentrations by precipitating urinary proteins with acetone before the reaction with luciferin. A correlation was found with the result of the immunoturbidimetric method; however, the Watasenia luciferin method tended to produce lower albumin concentrations. This may be because the Watasenia luciferin reacts with only intact albumin. Therefore, the quantification method using Watasenia luciferin is a new principle of urinary albumin measurement that differs from already established methods such as immunoturbidimetry and high-performance liquid chromatography.


Assuntos
Decapodiformes , Vaga-Lumes , Albuminas/metabolismo , Albuminúria/diagnóstico , Animais , Decapodiformes/química , Vaga-Lumes/metabolismo , Luciferina de Vaga-Lumes/metabolismo , Humanos , Luciferinas
12.
J Diabetes Investig ; 13(10): 1685-1694, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35638355

RESUMO

AIMS/INTRODUCTION: This study aimed to identify the clinical factors affecting postoperative residual pancreatic ß-cell function, as assessed by the C-peptide index (CPI), and to investigate the association between perioperative CPI and the status of diabetes management after pancreatectomy. MATERIALS AND METHODS: The associations between perioperative CPI and clinical background, including surgical procedures of pancreatectomy, were analyzed in 47 patients who underwent pancreatectomy, and were assessed for pre-and postoperative CPI. The association between perioperative CPI and glycemic control after pancreatectomy was investigated. RESULTS: The low postoperative CPI group (CPI <0.7) had longer duration of diabetes (17.5 ± 14.5 vs 5.5 ± 11.0 years, P = 0.004), a higher percentage of sulfonylurea users (41.7 vs 8.7%, P = 0.003) and a greater number of drug categories used for diabetes treatment (1.9 ± 1.1 vs 0.8 ± 0.8, P <0.001) than did the high postoperative CPI group. Postoperative CPI was higher (1.4 ± 1.2 vs 0.7 ± 0.6, P = 0.039) in patients with low glycosylated hemoglobin (<7.0%) at 6 months after pancreatectomy; preoperative (2.0 ± 1.5 vs 0.7 ± 0.5, P = 0.012) and postoperative CPI (2.5 ± 1.4 vs 1.4 ± 1.1, P = 0.020) were higher in non-insulin users than in insulin users at 6 months after surgery. CONCLUSIONS: The duration of diabetes and preoperative diabetes treatment were associated with residual pancreatic ß-cell function after pancreatectomy. Furthermore, perioperative ß-cell function as assessed by CPI was associated with diabetes management status after pancreatectomy.


Assuntos
Diabetes Mellitus , Pancreatectomia , Humanos , Peptídeo C , Diabetes Mellitus/etiologia , Hemoglobinas Glicadas , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
13.
Mol Nutr Food Res ; 66(10): e2101119, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297188

RESUMO

SCOPE: Isoliquiritigenin (ILG) has been reported to attenuate adipose tissue inflammation and metabolic disorder; however, the underlying mechanisms remain to be elucidated. The aim of this study is to elucidate whether ILG shows the anti-inflammatory and antimetabolic syndrome effects through gut microbiota modification. METHODS AND RESULTS: Mice are fed a high-fat diet (HFD) with or without ILG for up to 12 weeks. The effect of ILG on body weight, blood glucose level, adipose tissue inflammation, gut barrier function, and gut microbiota composition are investigated. ILG supplementation alleviates HFD-induced obesity, glucose tolerance, and insulin resistance and suppresses inflammatory gene expression in epididymal white adipose tissue (eWAT). Moreover, ILG supplementation modifies gut bacterial composition by increasing the abundance of antimetabolic disease-associated species (e.g., Parabacteroides goldsteinii and Akkemansia muciniphila) and up-regulated genes associated with gut barrier function. Fecal microbiome transplantation (FMT) from ILG-fed donors counteract HFD-induced body and eWAT weight changes, inflammation-related gene expression, glucose tolerance, and insulin resistance, thereby suggesting that ILG-responsive gut bacteria exerts anti-inflammatory and antimetabolic syndrome effects. CONCLUSION: Alterations in gut bacteria underly the beneficial effects of ILG against adipose tissue inflammation and metabolic disorders. ILG may be a promising prebiotic for the prevention and treatment of metabolic syndrome.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Bactérias , Chalconas , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Inflamação/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
14.
Diabetes ; 71(5): 945-960, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35212729

RESUMO

Growing evidence indicates an important link between gut microbiota, obesity, and metabolic syndrome. Alterations in exocrine pancreatic function are also widely present in patients with diabetes and obesity. To examine this interaction, C57BL/6J mice were fed a chow diet, a high-fat diet (HFD), or an HFD plus oral vancomycin or metronidazole to modify the gut microbiome. HFD alone leads to a 40% increase in pancreas weight, decreased glucagon-like peptide 1 and peptide YY levels, and increased glucose-dependent insulinotropic peptide in the plasma. Quantitative proteomics identified 138 host proteins in fecal samples of these mice, of which 32 were significantly changed by the HFD. The most significant of these were the pancreatic enzymes. These changes in amylase and elastase were reversed by antibiotic treatment. These alterations could be reproduced by transferring gut microbiota from donor C57BL/6J mice to germ-free mice. By contrast, antibiotics had no effect on pancreatic size or exocrine function in C57BL/6J mice fed the chow diet. Further, 1 week vancomycin administration significantly increased amylase and elastase levels in obese men with prediabetes. Thus, the alterations in gut microbiota in obesity can alter pancreatic growth, exocrine function, and gut endocrine function and may contribute to the alterations observed in patients with obesity and diabetes.


Assuntos
Microbioma Gastrointestinal , Amilases , Animais , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Pâncreas/metabolismo , Elastase Pancreática , Vancomicina/farmacologia
15.
J Diabetes Investig ; 13(6): 1052-1061, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35092353

RESUMO

AIMS/INTRODUCTION: Diastolic cardiac dysfunction in type 2 diabetes (DD2D) is a critical risk of heart failure with preserved ejection fraction. However, there is no established biomarker to detect DD2D. We aimed to investigate the predictive impact of fragmented QRS (fQRS) on electrocardiography on the existence of DD2D. MATERIALS AND METHODS: We included in-hospital patients with type 2 diabetes without heart failure symptoms who were admitted to our institution for glycemic management between November 2017 and April 2021. An fQRS was defined as an additional R' wave or notching/splitting of the S wave in two contiguous electrocardiography leads. DD2D was diagnosed according to the latest guidelines of the American Society of Echocardiography. RESULTS: Of 320 participants, 122 patients (38.1%) had fQRS. DD2D was diagnosed in 82 (25.6%). An fQRS was significantly associated with the existence of DD2D (odds ratio 4.37, 95% confidence interval 2.33-8.20; p < 0.0001) adjusted for seven potential confounders. The correlation between DD2D and diabetic microvascular disease was significant only among those with fQRS. Classification and regression tree analysis showed that fQRS was the most relevant optimum split for DD2D. CONCLUSIONS: An fQRS might be a simple and promising predictor of the existence of DD2D. The findings should be validated in a larger-scale cohort.


Assuntos
Diabetes Mellitus Tipo 2 , Cardiopatias , Insuficiência Cardíaca , Diabetes Mellitus Tipo 2/complicações , Eletrocardiografia , Coração , Humanos
16.
Nutrients ; 13(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34959926

RESUMO

Recently, obesity-induced insulin resistance, type 2 diabetes, and cardiovascular disease have become major social problems. We have previously shown that Astaxanthin (AX), which is a natural antioxidant, significantly ameliorates obesity-induced glucose intolerance and insulin resistance. It is well known that AX is a strong lipophilic antioxidant and has been shown to be beneficial for acute inflammation. However, the actual effects of AX on chronic inflammation in adipose tissue (AT) remain unclear. To observe the effects of AX on AT functions in obese mice, we fed six-week-old male C57BL/6J on high-fat-diet (HFD) supplemented with or without 0.02% of AX for 24 weeks. We determined the effect of AX at 10 and 24 weeks of HFD with or without AX on various parameters including insulin sensitivity, glucose tolerance, inflammation, and mitochondrial function in AT. We found that AX significantly reduced oxidative stress and macrophage infiltration into AT, as well as maintaining healthy AT function. Furthermore, AX prevented pathological AT remodeling probably caused by hypoxia in AT. Collectively, AX treatment exerted anti-inflammatory effects via its antioxidant activity in AT, maintained the vascular structure of AT and preserved the stem cells and progenitor's niche, and enhanced anti-inflammatory hypoxia induction factor-2α-dominant hypoxic response. Through these mechanisms of action, it prevented the pathological remodeling of AT and maintained its integrity.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Anti-Inflamatórios , Antioxidantes , Suplementos Nutricionais , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Glucose/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Xantofilas/administração & dosagem , Xantofilas/farmacologia
17.
Mol Metab ; 54: 101328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562641

RESUMO

OBJECTIVE: Expansion of adipose tissue during obesity through the recruitment of newly generated adipocytes (hyperplasia) is metabolically healthy, whereas that through the enlargement of pre-existing adipocytes (hypertrophy) leads to metabolic complications. Accumulating evidence from genetic fate mapping studies suggests that in animal models receiving a high-fat diet (HFD), only adipocyte progenitors (APs) in gonadal white adipose tissue (gWAT) have proliferative potential. However, the proliferative potential and differentiating capacity of APs in the inguinal WAT (iWAT) of male mice remains controversial. The objective of this study was to investigate the proliferative and adipogenic potential of APs in the iWAT of HFD-fed male mice. METHODS: We generated PDGFRα-GFP-Cre-ERT2/tdTomato (KI/td) mice and traced PDGFRα-positive APs in male mice fed HFD for 8 weeks. We performed a comprehensive phenotypic analysis, including the histology, immunohistochemistry, flow cytometry, and gene expression analysis, of KI/td mice fed HFD. RESULTS: Contrary to the findings of others, we found an increased number of newly generated tdTomato+ adipocytes in the iWAT of male mice, which was smaller than that observed in the gWAT. We found that in male mice, the iWAT has more proliferating tdTomato+ APs than the gWAT. We also found that tdTomato+ APs showed a higher expression of Dpp4 and Pi16 than tdTomato- APs, and the expression of these genes was significantly higher in the iWAT than in the gWAT of mice fed HFD for 8 weeks. Collectively, our results reveal that HFD feeding induces the proliferation of tdTomato+ APs in the iWAT of male mice. CONCLUSION: In male mice, compared with gWAT, iWAT undergoes hyperplasia in response to 8 weeks of HFD feeding through the recruitment of newly generated adipocytes due to an abundance of APs with a high potential for proliferation and differentiation.


Assuntos
Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Adipogenia , Animais , Feminino , Masculino , Camundongos , Camundongos Congênicos , Camundongos Transgênicos
18.
Diabetol Int ; 12(3): 324-329, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34150440

RESUMO

Sensor-augmented insulin pump therapy with a predictive low glucose suspend (SAP-PLGS) feature is a remarkably progressed modality for the glycemic management of patients with type 1 diabetes. This technology avoids nocturnal hypoglycemia and severe hypoglycemia. A Brazilian woman developed type 1 diabetes at age 11 and was treated with multiple daily insulin injections. At age 20, she was admitted to our internal medicine department for her first pregnancy. Her HbA1c was 7.9% in the 6 weeks of gestation. Although the combination of continuous subcutaneous insulin infusion and a sensor-augmented pump was introduced, she had a miscarriage in the next week. After 6 months, she became pregnant again. Despite an HbA1c of 7.2%, she had another miscarriage. Thereafter, she returned to multiple daily insulin injections and began using intermittently scanned continuous glycemic monitoring. At age 22, she had her third pregnancy. Her HbA1c was 7.3%. SAP-PLGS was then introduced, which reduced her frequent hypoglycemic events and blood glucose fluctuations. She gave birth to a 4137 g boy at 39 weeks without significant complications. Successful delivery can be obtained in women with type 1 diabetes following repeated miscarriages after introducing SAP-PLGS. We hypothesize that the modality might contributed to our patient's miscarriage avoidance by reducing her glycemic fluctuations.

19.
iScience ; 24(5): 102445, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997711

RESUMO

The gut microbiota metabolizes the nutrients to produce various metabolites that play crucial roles in host metabolism. However, the links between the microbiota established by different nutrients and the microbiota-influenced changes in the plasma lipids remain unclear. Diets rich in cornstarch, fructose, branched chain amino acids, soybean oil (SO), or lard established a unique microbiota and had influence on glucose metabolism, which was partially reproduced by transferring the microbiota. Comparison of plasma lipidomic analysis between germ-free and colonized mice revealed significant impacts of the microbiota on various lipid classes, and of note, the microbiota established by the SO diet, which was associated with the greatest degree of glucose intolerance, caused the maximum alteration of the plasma lipid profile. Thus, the gut microbiota composed of dietary nutrients was associated with dynamic changes in the lipids potentially having differential effects on glucose metabolism.

20.
J Diabetes Res ; 2021: 8838026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855087

RESUMO

OBJECTIVES: A single-arm prospective study was conducted among Japanese patients with type 2 diabetes having preserved ejection fraction. The aim was to investigate (1) whether liraglutide therapy could improve B-type natriuretic peptide (BNP) levels and diastolic cardiac function assessed by the E-wave to E' ratio (E/E') using transthoracic echocardiography (TTE), and (2) whether E/E' contributed to BNP improvement independent of bodyweight reduction (UMIN000005565). METHODS: Patients with type 2 diabetes and left ventricular ejection fraction (LVEF) ≥ 40% without heart failure symptoms were enrolled, and daily injection with liraglutide (0.9 mg) was introduced. Cardiac functions were assessed by TTE before and after 26 weeks of liraglutide treatment. Diastolic cardiac function was defined as septal E/E' ≥ 13.0. RESULTS: Thirty-one patients were analyzed. BNP and E/E' improved, with BNP levels declining from 36.8 ± 30.5 pg/mL to 26.3 ± 25.9 pg/mL (p = 0.0014) and E/E' dropping from 12.7 ± 4.7 to 11.0 ± 3.3 (p = 0.0376). The LVEF showed no significant changes. E/E' improved only in patients with E/E' ≥ 13.0. Favorable changes in E/E' were canceled when adjusted for body mass index (BMI). Multivariate linear regression analysis revealed that the left ventricular diastolic diameter and ∆E/E'/∆BMI contributed to ∆BNP/baseline BNP (p = 0.0075, R 2 = 0.49264). CONCLUSIONS: Liraglutide had favorable effects on BNP and E/E' but not on LVEF. E/E' improvement was only seen in patients with diastolic cardiac function. Body weight reduction affected the change of E/E'. The BMI-adjusted E/E' significantly contributed to the relative change of BNP. GLP-1 analog treatment could be considered a therapeutic option against diabetic diastolic cardiac dysfunction regardless of body weight. This trial is registered with the University Hospital Medical Information Network in Japan, with clinical trial registration number: UMIN000005565.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diástole/efeitos dos fármacos , Liraglutida/uso terapêutico , Peptídeo Natriurético Encefálico/sangue , Volume Sistólico/fisiologia , Redução de Peso/efeitos dos fármacos , Idoso , Diabetes Mellitus Tipo 2/fisiopatologia , Diástole/fisiologia , Feminino , Humanos , Liraglutida/farmacologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...