Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 778205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899805

RESUMO

The morphology of plants growing under combined blue- and red-light irradiation is affected by the presence or absence of time slots of blue- and red-light mono-irradiation. The purposes of this study were to investigate the morphology and growth of cos lettuce grown under light irradiation combining several durations of blue and red light simultaneously and independent mono-irradiations of blue and red light during the day, and to clarify the effects of the durations of blue-light mono-irradiation and blue-light irradiation. Young cos lettuce seedlings were grown under 24-h blue-light irradiation with a photosynthetic photon flux density (PPFD) of 110µmol m-2 s-1 (B+0R) or under 24-h blue-light irradiation with a PPFD of 100µmol m-2 s-1 supplemented with 8 (B+8R), 16 (B+16R), and 24-h (B+24R) red-light irradiation with PPFDs of 30, 15, and 10µmol m-2 s-1, respectively (Experiment 1). The daily light integral was 9.50mol m-2 in all treatments. In Experiment 1, leaf elongation was promoted as the duration of red-light irradiation decreased and the duration of blue-light mono-irradiation increased. The maximum shoot dry weight was observed under the B+8R treatment. Growth was likely promoted by the expansion of the light-receptive area caused by moderate leaf elongation without tilting. In Experiment 2, young cos lettuce seedlings were grown as for Experiment 1, but blue- and red-light irradiation intensities were reversed (R+0B, R+8B, R+16B, and R+24B). Leaf elongation was promoted by the absence of blue-light irradiation (R+0B). The leaf surface was increasingly flattened, and the shoot dry weight was enhanced, as the duration of blue-light irradiation increased. Thus, cos lettuce leaf morphology may be manipulated by adjusting each duration of blue-light mono-irradiation, red-light mono-irradiation, and blue- and red-light simultaneous irradiation, which can, in turn, promote cos lettuce growth.

2.
Front Plant Sci ; 12: 675810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211488

RESUMO

The effects of photosynthetic photon flux density (PPFD) fluctuations in sunlight have already been investigated; however, the spectral photon flux density distribution (SPD) has hardly been considered. Here, sunlight SPD fluctuations recorded for 200 min in October in Tokyo, Japan were artificially reproduced using an LED-artificial sunlight source system. The net photosynthetic rate (P n) of cucumber leaves under reproduced sunlight was measured and compared with the P n estimated from a steady-state PPFD-P n curve for the same leaves. The measured and estimated P n agreed except when the PPFD was low, where the measured P n was lower than the estimated P n. The ratio of measured P n to estimated P n was 0.94-0.95 for PPFD ranges of 300-700 µmol m-2 s-1, while the value was 0.98-0.99 for 900-1,300 µmol m-2 s-1, and the overall ratio was 0.97. This 3% reduction in the measured P n compared with the P n estimated from a steady-state PPFD-P n curve was significantly smaller than the approximately 20-30% reduction reported in previous experimental and simulation studies. This result suggests that the loss of integral net photosynthetic gain under fluctuating sunlight can vary among days with different fluctuation patterns or may be non-significant when fluctuations in both PPFD and relative SPD of sunlight are taken into consideration.

3.
Front Plant Sci ; 12: 809046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211135

RESUMO

Leaves acclimate to day-to-day fluctuating levels of photosynthetic photon flux density (PPFD) by adjusting their morphological and physiological parameters. Accurate estimation of these parameters under day-to-day fluctuating PPFD conditions benefits crop growth modeling and light environment management in greenhouses, although it remains challenging. We quantified the relationships between day-to-day PPFD changes over 6 days and light acclimation parameters for cucumber seedling leaves, including leaf mass per area (LMA), chlorophyll (Chl) a/b ratio, maximum net photosynthetic rate (P nmax), maximum rate of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (V cmax), and maximum rate of electron transport (J max). The last two parameters reflect the capacity of the photosynthetic partial reactions. We built linear regression models of these parameters based on average or time-weighted averages of daily PPFDs. For time-weighted averages of daily PPFDs, the influence of daily PPFD was given a specific weight. We employed three types of functions to calculate this weight, including linear, quadratic, and sigmoid derivative types. We then determined the trend of weights that estimated each parameter most accurately. Moreover, we introduced saturating functions to calibrate the average or time-weighted averages of daily PPFDs, considering that light acclimation parameters are usually saturated under high PPFDs. We found that time-weighted average PPFDs, in which recent PPFD levels had larger weights than earlier levels, better estimated LMA than average PPFDs. This suggests that recent PPFDs contribute more to LMA than earlier PPFDs. Except for the Chl a/b ratio, the average PPFDs estimated P nmax, V cmax, and J max with acceptable accuracy. In contrast, time-weighted averages of daily PPFDs did not improve the estimation accuracy of these four parameters, possibly due to their low response rates and plasticity. Calibrating functions generally improved estimation of Chl a/b ratio, V cmax, and J max because of their saturating tendencies under high PPFDs. Our findings provide a reasonable approach to quantifying the extent to which the leaves acclimate to day-to-day fluctuating PPFDs, especially the extent of LMA.

4.
Neuroradiology ; 62(4): 455-461, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31898767

RESUMO

PURPOSE: MR angiography using the silent MR angiography algorithm (silent MRA), which combines arterial spin labeling and an ultrashort time echo, has not been used for the evaluation of cerebral arteriovenous malformations (CAVMs). We aimed to determine the usefulness of silent MRA for the evaluation of CAVMs. METHODS: Twenty-nine CAVMs of 28 consecutive patients diagnosed by 4D CT angiography or digital subtraction angiography, who underwent both time-of-flight (TOF) MRA and silent MRA, were enrolled. Two observers independently assessed the TOF-MRA and silent MRA images of CAVMs. Micro AVM was defined as AVM with a nidus diameter less than 10 mm. The detection rate, visualization of the components, and accuracy of Spetzler-Martin grade were evaluated with statistical software R. RESULTS: For all 29 CAVMs, 23 (79%) lesions were detected for TOF-MRA and all for silent MRA. Of 10 micro AVMs, only 4 (40%) lesions were detectable on TOF-MRA and all (100%) on silent MRA. The visibility of the nidus and drainer was significantly better for silent MRA than TOF-MRA (p < 0.001), while there was no significant difference in the feeder between the two sequences. The accuracy rates of the Spetzler-Martin grade for the TOF and silent MRA were 38% (11/29) and 79.3% (23/29), respectively (p < 0.001). CONCLUSIONS: Silent MRA is useful for evaluating CAVM components and detecting micro AVM.


Assuntos
Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Algoritmos , Angiografia Digital , Angiografia por Tomografia Computadorizada , Meios de Contraste , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Marcadores de Spin
5.
Front Plant Sci ; 9: 1315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233635

RESUMO

In this study, gas exchange characteristics and temperature of Nicotiana benthamiana leaves transiently overexpressing hemagglutinin (HA), an influenza vaccine antigen, with an Agrobacterium tumefaciens-assisted viral vector were investigated. Inoculation of leaves with an empty viral vector not containing the HA gene decreased the net photosynthetic rate (Pn) and transpiration rate (T) from 2 to 3 days post-infiltration (DPI) in the A. tumefaciens suspension. Expression of HA with the vector decreased Pn and T to much lower levels until 4 DPI. Such significant decreases were not observed in leaves infiltrated with suspension of A. tumefaciens not carrying the viral vector or in uninfiltrated leaves. Thus, viral vector inoculation itself decreased Pn and T to a certain extent and the HA expression further decreased them. The decreases in Pn and T in empty vector-inoculated and HA expression vector-inoculated leaves were associated with decreases in stomatal conductance, suggesting that the reduction of gas exchange rates was caused at least in part by stomatal closure. More detailed gas exchange and chlorophyll fluorescence analyses revealed that in HA vector-inoculated leaves, the capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase to assimilate CO2 and the capacity of photosynthetic electron transport in planta were downregulated, which contributed also to the decrease in Pn. Leaf temperature (LT) increased in viral vector-inoculated leaves, which was associated with the decrease in T. When HA vector-inoculated leaves were grown at air temperatures (ATs) of 21, 23, and 26°C post-infiltration, HA accumulated earlier in leaves and the days required for HA content to attain its peak became shorter, as AT was higher. The highest LT was found 1-2 days earlier than the highest leaf HA content under all post-infiltration AT conditions. This phenomenon could be applicable in a non-destructive technique to detect the optimum harvesting date for individual plants to determine the day when leaf HA content reaches its maximum level, irrespective of spatiotemporal variation of AT, in a plant growth facility.

6.
Plant Cell Physiol ; 59(8): 1643-1651, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697808

RESUMO

To enable us to analyze more systematically the effects of the spectral distribution of light (i.e. light quality) on photosynthetic electron transport, we propose a simple mathematical model which describes electron transport reactions under light-limited conditions based on the excitation energy distributed to the photosystems. The model assumes that the rate-limiting photosystem performs the photochemical reaction at its maximum yield, while the yield in the other photosystem is passively down-regulated to equalize the rates of linear electron transport through the photosystems. Using intact cucumber leaves, we tested the model by comparing actual and estimated photosynthetic parameters under several combinations of photon flux densities of red and far-red lights (R and FR, respectively). Simultaneously provided R and FR yielded greater gross photosynthetic rates than the sums of the rates under only R and only FR, which is known as the 'enhancement effect'. The present model reproduced these non-additive increases in the gross photosynthetic rates in response to supplemental FR to R and provided more accurate estimates than an existing method that did not take the enhancement effect into account (root mean square errors: 0.11 and 0.21 µmol m-2 s-1, respectively). Using the present model, the photon flux density of the supplemental FR which gives the changing point of rate-limiting photosystem and the photochemical yields of the non-rate-limiting photosystems were estimated reasonably well. The present study has therefore formulated a simplified quantitative electron transport model in response to the light spectrum based on generally accepted concepts and demonstrated its validity experimentally.


Assuntos
Luz , Modelos Teóricos , Fotossíntese/fisiologia , Transporte de Elétrons/fisiologia , Transporte de Elétrons/efeitos da radiação , Fotossíntese/efeitos da radiação
7.
Photosynth Res ; 136(3): 371-378, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29236208

RESUMO

Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m-2 s-1. Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.


Assuntos
Lactuca/fisiologia , Lactuca/efeitos da radiação , Fótons , Fotossíntese/efeitos da radiação , Modelos Biológicos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
8.
Plant Cell Environ ; 41(1): 148-159, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28548208

RESUMO

Absorbed light energy is converted into excitation energy. The excitation energy is distributed to photosystems depending on the wavelength and drives photochemical reactions. A non-destructive, mechanistic and quantitative method for estimating the fraction of the excitation energy distributed to photosystem II (f) was developed. For the f values for two simultaneously provided actinic lights (ALs) with different spectral distributions to be estimated, photochemical yields of the photosystems were measured under the ALs and were then fitted to an electron transport model assuming the balance between the electron transport rates through the photosystems. For the method to be tested using leaves with different properties in terms of the long-term and short-term acclimation (adjustment of photosystem stoichiometry and state transition, respectively), the f values for red and far-red light (R and FR) were estimated in leaves grown (~1 week) under white light without and with supplemental FR and adapted (~10 min) to R without and with supplemental FR. The f values for R were clearly greater than those for FR and those of leaves grown with and adapted to supplemental FR tended to be higher than the controls. These results are consistent with previous studies and therefore support the validity of the proposed method.


Assuntos
Cucumis sativus/fisiologia , Luz , Modelos Biológicos , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Cucumis sativus/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Fótons , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Teoria Quântica , Fatores de Tempo
10.
J Biosci Bioeng ; 124(3): 346-350, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28460871

RESUMO

Transient gene expression in whole plants by using viral vectors is promising as a rapid, mass production system for biopharmaceutical proteins. Recent studies have indicated that plant growth conditions such as air temperature markedly influence the accumulation levels of target proteins. Here, we investigated time course of the amount of recombinant hemagglutinin (HA), a vaccine antigen of influenza virus, in leaves of Nicotiana benthamiana plants grown at 20°C or 25°C post viral vector inoculation. The HA content per unit of leaf biomass increased and decreased from 4 to 6 days post inoculation at 20°C and 25°C, respectively, irrespective of the subcellular localization of HA. The overall HA contents were higher when HA was targeted to the endoplasmic reticulum (ER) rather than the apoplast. Necrosis of leaf tissues was specifically observed in plants inoculated with the ER-targeting vector and grown at 25°C. With the ER-targeting vector, the maximum HA contents at 20°C and 25°C were recorded at 6 and 4 days post inoculation, respectively, and were comparable to each other. HA contents thereafter decreased at both temperatures; the rate of reduction appeared faster at 25°C than at 20°C. From a practical point of view, our results indicate that the strategy of targeting HA to the ER, growing plants at a lower temperature of 20°C, and harvesting leaves at around a week after vector inoculation should be implemented to obtain a high HA yield stably and efficiently.


Assuntos
Vetores Genéticos/genética , Hemaglutininas/biossíntese , Hemaglutininas/genética , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Temperatura , Retículo Endoplasmático/metabolismo , Hemaglutininas/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Necrose , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética
11.
Biotechnol Bioeng ; 114(8): 1762-1770, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28369753

RESUMO

Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM-1 ) and recombinant protein productivity per unit area-time (g m-2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m-2 than at a low plant density of 100 plants m-2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc.


Assuntos
Agrobacterium/genética , Hemaglutininas/genética , Hemaglutininas/metabolismo , Nicotiana/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Hemaglutininas/isolamento & purificação , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Nicotiana/microbiologia
12.
Physiol Plant ; 158(2): 213-24, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26822286

RESUMO

The net photosynthetic rate of a leaf becomes acclimated to the plant's environment during growth. These rates are often measured, evaluated and compared among leaves of plants grown under different light conditions. In this study, we compared net photosynthetic rates of cucumber leaves grown under white light-emitting diode (LED) light without and with supplemental far-red (FR) LED light (W- and WFR-leaves, respectively) under three different measuring light (ML) conditions: their respective growth light (GL), artificial sunlight (AS) and blue and red (BR) light. The difference in the measured photosynthetic rates between W- and WFR-leaves was greater under BR than under GL and AS. In other words, an interaction between supplemental FR light during growth and the spectral photon flux density distribution (SPD) of ML affected the measured net photosynthetic rates. We showed that the comparison and evaluation of leaf photosynthetic rates and characteristics can be biased depending on the SPD of ML, especially for plants grown under different photon flux densities in the FR waveband. We also investigated the mechanism of the interaction. We confirmed that the distribution of excitation energy between the two photosystems (PSs) changed in response to the SPD of GL, and that this change resulted in the interaction, as suggested in previous reports. However, changes in PS stoichiometry could not completely explain the adjustment in excitation energy distribution observed in this study, suggesting that other mechanisms may be involved in the interaction.


Assuntos
Cucumis sativus/fisiologia , Folhas de Planta/fisiologia , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/efeitos da radiação , Luz , Fótons , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Transpiração Vegetal
13.
Biotechnol Bioeng ; 113(4): 901-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26461274

RESUMO

The use of detached leaves instead of whole plants provides an alternative means for recombinant protein production based on Agrobacterium tumefaciens-mediated transient gene overexpression. However, the process for high-level protein production in detached leaves has not yet been established. In this study, we focused on leaf handling and maintenance conditions immediately after infiltration with Agrobacterium suspension (agroinfiltration) to improve recombinant protein expression in detached Nicotiana benthamiana leaves. We demonstrated that the residual water of bacterial suspension in detached leaves had significant impact on the yield of recombinant influenza hemagglutinin (HA). Immediately after agroinfiltration, detached leaves were stored in a dehumidified chamber to allow bacterial suspension water occupying intercellular space to be removed by transpiration. We varied the duration of this water removal treatment from 0.7 to 4.4 h, which resulted in leaf fresh weights ranging from 0.94 to 1.28 g g(-1) relative to weights measured just before agroinfiltration. We used these relative fresh weights (RFWs) as an indicator of the amount of residual water. The detached leaves were then incubated in humidified chambers for 6 days. We found that the presence of residual water significantly decreased HA yield, with a clear inverse correlation observed between HA yield and RFW. We next compared HA yields in detached leaves with those obtained from intact leaves by whole-plant expression performed at the same time. The maximum HA yield obtained from a detached leaf with a RFW of approximately 1.0, namely, 800 µg gFW(-1), was comparable to the mean HA yield of 846 µg gFW(-1) generated in intact leaves. Our results indicate the necessity of removing bacterial suspension water from agroinfiltrated detached leaves in transient overexpression systems and point to a critical factor enabling the detached-leaf system as a viable recombinant protein factory.


Assuntos
Espaço Extracelular/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Água/metabolismo , Agrobacterium tumefaciens/genética , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Folhas de Planta/genética , Transpiração Vegetal , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Nicotiana/genética , Transformação Genética
14.
Photosynth Res ; 124(1): 107-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736464

RESUMO

Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.


Assuntos
Lactuca/fisiologia , Lactuca/efeitos da radiação , Luz , Modelos Biológicos , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Fótons , Fatores de Tempo
15.
ISME J ; 9(2): 436-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25105906

RESUMO

The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.


Assuntos
Metano/metabolismo , Gás Natural , Campos de Petróleo e Gás , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Gases , Água Subterrânea/química
16.
Biosci Biotechnol Biochem ; 78(10): 1765-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25069809

RESUMO

The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.


Assuntos
Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Técnicas de Cultura/métodos , Hidrocarbonetos/isolamento & purificação , Hidrocarbonetos/metabolismo , Luz , Biopolímeros/biossíntese , Biopolímeros/química , Carotenoides/metabolismo , Clorófitas/efeitos da radiação , Cor , Técnicas de Cultura/instrumentação , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Hidrocarbonetos/química , Solubilidade , Temperatura , Água/química
17.
Plant Methods ; 8(1): 46, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23173915

RESUMO

BACKGROUND: Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. RESULTS: We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m-2 s-1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m-2 s-1 nm-1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m-2 s-1 nm-1 m-1) was 2 deg per 1 micro-mol m-2 s-1 nm-1 m-1. CONCLUSIONS: The plant lighting system, with a computer with a graphical user interface program, can control the PFD and mixing ratios of five wavelength-band lights. A highly uniform PFD distribution was achieved, although an intentionally distorted PFD gradient was also created. Phototropic responses of oat coleoptiles to the blue light gradient demonstrated the merit of fine controllability of this plant lighting system.

18.
Bioelectromagnetics ; 32(3): 243-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21365668

RESUMO

This study developed a lighting system that produces an approximate spectral irradiance (SI) of ground level sunlight in the wavelength range of 385-910 nm (GLS385₋910) using 547 light-emitting diodes (LEDs) with 32 different peak wavelengths. The produced SI can be modified over an arbitrary wavelength band. The SI at the light outlet reached up to 1/2 of the GLS385₋910 of a sunny April day, although the produced SI deviated from the GLS385₋910 at some wavelengths. For subsequent experiments, the reference SI was defined as 1/4 GLS385₋910 of a sunny April day. The SI produced from the lighting system was adjusted to approximate the reference SI. The ratios of the produced SI and the reference SI were within 0.72-1.28. As an application of the lighting system for biological studies, the transmitted SI of a green leaf of perilla (Perilla frutescens L.) was investigated. The curve shape of the transmitted SI, which had characteristically low transmission percentages of blue and red light, reflected the characteristics of the absorption spectra of chlorophylls. The lighting system is therefore potentially beneficial for use in diagnosing physiological conditions of plant leaves, although its application is not limited to plant physiological studies.


Assuntos
Iluminação/instrumentação , Luz Solar , Perilla frutescens/efeitos da radiação , Pigmentação , Folhas de Planta/efeitos da radiação , Análise Espectral
19.
FEMS Microbiol Ecol ; 76(2): 220-35, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21223337

RESUMO

We prepared DNA from the production waters of oil deposits and wellheads of the high- and hypertemperature Japanese oil wells #AR39 (depth, 1230 m; temperature, 74 °C; pressure, 2.92 MPa) and #SR123 (depth, 1687 m; temperature, 98 °C; pressure, 11.3 MPa) to detect indigenous bacterial and archaeal microorganisms. We used PCR to amplify the 16S rRNA genes of microbial communities and characterized them based on their sequences. A few species of microorganisms with high GC contents were detected in samples from oil deposits, whereas the microbial constituents and their GC contents were diverse in wellhead samples. A comparison of the composition of the microbial communities found that the predominant indigenous populations in the #SR123 oil deposit were Thermotoga hypogea-, Thermotoga petrophila- and Thermodesulfobacterium commune-like bacteria with a 61-63% GC content in their 16S rRNA gene sequences, and Archaeoglobus fulgidus-like archaea with a 65% GC content, whereas the major population in #AR39 comprised Thermacetogenium phaeum- and Fervidobacterium pennavorans-like bacteria and Methanothermobacter thermautotrophicus-like archaea with a 60%, 60% and 61% GC content, respectively.


Assuntos
Archaea/genética , Bactérias/genética , Petróleo/microbiologia , Microbiologia da Água , Archaea/classificação , Bactérias/classificação , Composição de Bases , Biota , Biblioteca Gênica , Japão , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água/química
20.
Plant Cell Physiol ; 49(4): 664-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18349045

RESUMO

Blue light effects on the acclimation of energy partitioning characteristics in PSII and CO2 assimilation capacity in spinach to high growth irradiance were investigated. Plants were grown hydroponically in different light treatments that were a combination of two light qualities and two irradiances,i.e. white light and blue-deficient light at photosynthetic photon flux densities (PPFDs) of 100 and 500 micromol m(-2) s(-1). The CO2 assimilation rate, the quantum efficiency of PSII(PhiPSII) and thermal dissipation activity (F(v)/F(m)-F'(v)/F'(m)) in young, fully expanded leaves were measured under 1,600 micromol m(-2) s(-1) white light. The CO2 assimilation rate and (PhiPSII) were higher, while F(v)/F(m)-F'(v)/F'(m) was lower in plants grown under high irradiance than in plants grown under low irradiance. These responses were observed irrespective of the presence or absence of blue light during growth. The extent of the increase in the CO2 assimilation rate and PhiPSII and the decrease in F(v)/F(m)-F'(v)/F'(m) by high growth irradiance was smaller under blue light-deficient conditions. These results indicate that blue light helps to boost the acclimation responses of energy partitioning in PSII and CO2 assimilation to high irradiance. Similarly, leaf N, Cyt f and Chl contents per unit leaf area increased by high growth irradiance, and the extent of the increment in leaf N, Cyt f and Chl was smaller under blue light-deficient conditions. Regression analysis showed that the differences in energy partitioning in PSIIand CO2 assimilation between plants grown under high white light and high blue-deficient light were closely related to the difference in leaf N.


Assuntos
Aclimatação/efeitos da radiação , Dióxido de Carbono/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Spinacia oleracea/metabolismo , Clorofila/metabolismo , Citocromos f/metabolismo , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Nitrogênio/metabolismo , Pressão Parcial , Fótons , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Spinacia oleracea/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA