Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 151: 317-335, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35468492

RESUMO

In building artificial intelligence (AI) agents, referring to how brains function in real environments can accelerate development by reducing the design space. In this study, we propose a probabilistic generative model (PGM) for navigation in uncertain environments by integrating the neuroscientific knowledge of hippocampal formation (HF) and the engineering knowledge in robotics and AI, namely, simultaneous localization and mapping (SLAM). We follow the approach of brain reference architecture (BRA) (Yamakawa, 2021) to compose the PGM and outline how to verify the model. To this end, we survey and discuss the relationship between the HF findings and SLAM models. The proposed hippocampal formation-inspired probabilistic generative model (HF-PGM) is designed to be highly consistent with the anatomical structure and functions of the HF. By referencing the brain, we elaborate on the importance of integration of egocentric/allocentric information from the entorhinal cortex to the hippocampus and the use of discrete-event queues.


Assuntos
Inteligência Artificial , Robótica , Encéfalo , Córtex Entorrinal , Hipocampo
2.
Brain Sci ; 10(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948100

RESUMO

Path integration is one of the functions that support the self-localization ability of animals. Path integration outputs position information after an animal's movement when initial-position and movement information is input. The core region responsible for this function has been identified as the medial entorhinal cortex (MEC), which is part of the hippocampal formation that constitutes the limbic system. However, a more specific core region has not yet been identified. This research aims to clarify the detailed structure at the cell-firing level in the core region responsible for path integration from fragmentarily accumulated experimental and theoretical findings by reviewing 77 papers. This research draws a novel diagram that describes the MEC, the hippocampus, and their surrounding regions by focusing on the MEC's input/output (I/O) information. The diagram was created by summarizing the results of exhaustively scrutinizing the papers that are relative to the I/O relationship, the connection relationship, and cell position and firing pattern. From additional investigations, we show function information related to path integration, such as I/O information and the relationship between multiple functions. Furthermore, we constructed an algorithmic hypothesis on I/O information and path-integration calculation method from the diagram and the information of functions related to path integration. The algorithmic hypothesis is composed of regions related to path integration, the I/O relations between them, the calculation performed there, and the information representations (cell-firing pattern) in them. Results of examining the hypothesis confirmed that the core region responsible for path integration was either stellate cells in layer II or pyramidal cells in layer III of the MEC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...