Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843068

RESUMO

Most autophagy-related genes, or ATG genes, have been identified in studies using budding yeast. Although the functions of the ATG genes are well understood, the contributions of individual genes to non-selective and various types of selective autophagy remain to be fully elucidated. In this study, we quantified the activity of non-selective autophagy, the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy, endoplasmic reticulum (ER)-phagy, and pexophagy in all Saccharomyces cerevisiae atg mutants. Among the mutants of the core autophagy genes considered essential for autophagy, the atg13 mutant and mutants of the genes involved in the two ubiquitin-like conjugation systems retained residual autophagic functionality. In particular, mutants of the Atg8 ubiquitin-like conjugation system (the Atg8 system) exhibited substantial levels of non-selective autophagy, the Cvt pathway, and pexophagy, although mitophagy and ER-phagy were undetectable. Atg8-system mutants also displayed intravacuolar vesicles resembling autophagic bodies, albeit at significantly reduced size and frequency. Thus, our data suggest that membranous sequestration and vacuolar delivery of autophagic cargo can occur in the absence of the Atg8 system. Alongside these findings, the comprehensive analysis conducted here provides valuable datasets for future autophagy research.

2.
Autophagy ; : 1-9, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38818923

RESUMO

Mitochondria undergo fission and fusion, and their coordinated balance is crucial for maintaining mitochondrial homeostasis. In yeast, the dynamin-related protein Dnm1 is a mitochondrial fission factor acting from outside the mitochondria. We recently reported the mitochondrial intermembrane space protein Atg44/mitofissin/Mdi1/Mco8 as a novel fission factor, but the relationship between Atg44 and Dnm1 remains elusive. Here, we show that Atg44 is required to complete Dnm1-mediated mitochondrial fission under homeostatic conditions. Atg44-deficient cells often exhibit enlarged mitochondria with accumulated Dnm1 and rosary-like mitochondria with Dnm1 foci at constriction sites. These mitochondrial constriction sites retain the continuity of both the outer and inner membranes within an extremely confined space, indicating that Dnm1 is unable to complete mitochondrial fission without Atg44. Moreover, accumulated Atg44 proteins are observed at mitochondrial constriction sites. These findings suggest that Atg44 and Dnm1 cooperatively execute mitochondrial fission from inside and outside the mitochondria, respectively.Abbreviation: ATG: autophagy related; CLEM: correlative light and electron microscopy; EM: electron microscopy; ER: endoplasmic reticulum; ERMES: endoplasmic reticulum-mitochondria encounter structure; GA: glutaraldehyde; GFP: green fluorescent protein; GTP: guanosine triphosphate: IMM: inner mitochondrial membrane; IMS: intermembrane space; OMM: outer mitochondrial membrane; PB: phosphate buffer; PBS: phosphate-buffered saline; PFA: paraformaldehyde; RFP: red fluorescent protein; WT: wild type.

3.
Cell Death Differ ; 31(5): 651-661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519771

RESUMO

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis and can be categorized into two types: ubiquitin-mediated and receptor-mediated pathways. During receptor-mediated mitophagy, mitophagy receptors facilitate mitophagy by tethering the isolation membrane to mitochondria. Although at least five outer mitochondrial membrane proteins have been identified as mitophagy receptors, their individual contribution and interrelationship remain unclear. Here, we show that HeLa cells lacking BNIP3 and NIX, two of the five receptors, exhibit a complete loss of mitophagy in various conditions. Conversely, cells deficient in the other three receptors show normal mitophagy. Using BNIP3/NIX double knockout (DKO) cells as a model, we reveal that mitophagy deficiency elevates mitochondrial reactive oxygen species (mtROS), which leads to activation of the Nrf2 antioxidant pathway. Notably, BNIP3/NIX DKO cells are highly sensitive to ferroptosis when Nrf2-driven antioxidant enzymes are compromised. Moreover, the sensitivity of BNIP3/NIX DKO cells is fully rescued upon the introduction of wild-type BNIP3 and NIX, but not the mutant forms incapable of facilitating mitophagy. Consequently, our results demonstrate that BNIP3 and NIX-mediated mitophagy plays a role in regulating mtROS levels and protects cells from ferroptosis.


Assuntos
Ferroptose , Proteínas de Membrana , Mitocôndrias , Proteínas Mitocondriais , Mitofagia , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas , Espécies Reativas de Oxigênio , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Células HeLa , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Proto-Oncogênicas/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Baixo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Mol Cell Biol ; 43(12): 675-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051102

RESUMO

Target of rapamycin complex 1 (TORC1) is activated in response to nutrient availability and growth factors, promoting cellular anabolism and proliferation. To explore the mechanism of TORC1-mediated proliferation control, we performed a genetic screen in fission yeast and identified Sfp1, a zinc-finger transcription factor, as a multicopy suppressor of temperature-sensitive TORC1 mutants. Our observations suggest that TORC1 phosphorylates Sfp1 and protects Sfp1 from proteasomal degradation. Transcription analysis revealed that Sfp1 positively regulates genes involved in ribosome production together with two additional transcription factors, Ifh1/Crf1 and Fhl1. Ifh1 physically interacts with Fhl1, and the nuclear localization of Ifh1 is regulated in response to nutrient levels in a manner dependent on TORC1 and Sfp1. Taken together, our data suggest that the transcriptional regulation of the genes involved in ribosome biosynthesis by Sfp1, Ifh1, and Fhl1 is one of the key pathways through which nutrient-activated TORC1 promotes cell proliferation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ribossomos/metabolismo , Proliferação de Células , Regulação Fúngica da Expressão Gênica
5.
Autophagy ; 19(11): 3019-3021, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37455477

RESUMO

ABBREVIATIONS: Atg: autophagy related; IMM: inner mitochondrial membrane; IMS: intermembrane space; PAS: phagophore assembly site; SAR: selective autophagy receptor.


Assuntos
Autofagia , Mitofagia , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
6.
Mol Cell ; 83(12): 1953-1955, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327769

RESUMO

We talk to corresponding author Tomotake Kanki and co-first authors Tomoyuki Fukuda and Kentaro Furukawa about their paper "The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy" (this issue of Molecular Cell), their career paths, interests outside of their fields, and how they strike a work-life balance.


Assuntos
Proteínas Mitocondriais , Ubiquitina-Proteína Ligases , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mitofagia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial
7.
Mol Cell ; 83(12): 2045-2058.e9, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192628

RESUMO

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Assuntos
Autofagia , Mitofagia , Animais , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Lipídeos , Mamíferos/metabolismo
8.
Autophagy ; 19(10): 2657-2667, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191320

RESUMO

The endoplasmic reticulum (ER) undergoes selective autophagy called reticulophagy or ER-phagy. Multiple reticulon- and receptor expression enhancing protein (REEP)-like ER-shaping proteins, including budding yeast Atg40, serve as reticulophagy receptors that stabilize the phagophore on the ER by interacting with phagophore-conjugated Atg8. Additionally, they facilitate phagophore engulfment of the ER by remodeling ER morphology. We reveal that Hva22, a REEP family protein in fission yeast, promotes reticulophagy without Atg8-binding capacity. The role of Hva22 in reticulophagy can be replaced by expressing Atg40 independently of its Atg8-binding ability. Conversely, adding an Atg8-binding sequence to Hva22 enables it to substitute for Atg40 in budding yeast. Thus, the phagophore-stabilizing and ER-shaping activities, both of which Atg40 solely contains, are divided between two separate factors, receptors and Hva22, respectively, in fission yeast.Abbreviations: AIM: Atg8-family interacting motif; Atg: autophagy related; DTT: dithiothreitol; ER: endoplasmic reticulum GFP: green fluorescent protein; NAA: 1-naphthaleneacetic acid; REEP: receptor expression enhancing protein; RFP: red fluorescent protein; UPR: unfolded protein response.


Assuntos
Autofagia , Schizosaccharomyces , Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Transporte/metabolismo
9.
Cell Rep ; 42(5): 112398, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083330

RESUMO

Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Axônios/metabolismo , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese/genética , Bulbo Olfatório , Neurônios Receptores Olfatórios/metabolismo , Terminações Pré-Sinápticas/metabolismo
10.
Nat Struct Mol Biol ; 28(7): 583-593, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239122

RESUMO

Autophagosome biogenesis is an essential feature of autophagy. Lipidation of Atg8 plays a critical role in this process. Previous in vitro studies identified membrane tethering and hemi-fusion/fusion activities of Atg8, yet definitive roles in autophagosome biogenesis remained controversial. Here, we studied the effect of Atg8 lipidation on membrane structure. Lipidation of Saccharomyces cerevisiae Atg8 on nonspherical giant vesicles induced dramatic vesicle deformation into a sphere with an out-bud. Solution NMR spectroscopy of Atg8 lipidated on nanodiscs identified two aromatic membrane-facing residues that mediate membrane-area expansion and fragmentation of giant vesicles in vitro. These residues also contribute to the in vivo maintenance of fragmented vacuolar morphology under stress in fission yeast, a moonlighting function of Atg8. Furthermore, these aromatic residues are crucial for the formation of a sufficient number of autophagosomes and regulate autophagosome size. Together, these data demonstrate that Atg8 can cause membrane perturbations that underlie efficient autophagosome biogenesis.


Assuntos
Autofagossomos/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Membrana Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Nanoestruturas , Ressonância Magnética Nuclear Biomolecular , Fosfatidiletanolaminas/química , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo
11.
Autophagy ; 17(7): 1794-1795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085593

RESUMO

Target of rapamycin complex 1 (TORC1) promotes cellular anabolism and suppresses macroautophagy/autophagy. In mammalian cells starved of amino acid, the GATOR1 complex, a negative regulator of TORC1, is released from its inhibitor GATOR2 and inactivates TORC1. We have recently identified the evolutionarily conserved GATOR2 components in fission yeast including Sea3, an ortholog of mammalian WDR59, but, unexpectedly, Sea3 acts as a part of GATOR1 to suppress TORC1. Moreover, fission yeast GATOR1 is not required for the amino-acid starvation-induced TORC1 attenuation, which is instead mediated by the Gcn2 pathway. Conversely, absence of a nitrogen source suppresses TORC1 in a manner dependent on GATOR1 as well as the Tsc1-Tsc2 complex, whose mammalian equivalent functions as a growth-factor sensitive TORC1 inhibitor. Thus, the evolutionarily conserved signaling modules are utilized differently between fission yeast and mammals to control TORC1 activity and autophagy.


Assuntos
Autofagia , Schizosaccharomyces , Animais , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
12.
J Cell Physiol ; 236(11): 7612-7624, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934360

RESUMO

Muscle disuse induces atrophy through increased reactive oxygen species (ROS) released from damaged mitochondria. Mitophagy, the autophagic degradation of mitochondria, is associated with increased ROS production. However, the mitophagy activity status during disuse-induced muscle atrophy has been a subject of debate. Here, we developed a new mitophagy reporter mouse line to examine how disuse affected mitophagy activity in skeletal muscles. Mice expressing tandem mCherry-EGFP proteins on mitochondria were then used to monitor the dynamics of mitophagy activity. The reporter mice demonstrated enhanced mitophagy activity and increased ROS production in atrophic soleus muscles following a 14-day hindlimb immobilization. Results also showed an increased expression of multiple mitophagy genes, including Bnip3, Bnip3l, and Park2. Our findings thus conclude that disuse enhances mitophagy activity and ROS production in atrophic skeletal muscles and suggests that mitophagy is a potential therapeutic target for disuse-induced muscle atrophy.


Assuntos
Mitocôndrias Musculares/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Elevação dos Membros Posteriores , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Inanição , Fatores de Tempo , Proteína Vermelha Fluorescente
13.
Elife ; 102021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534698

RESUMO

Mammalian target of rapamycin complex 1 (TORC1) is controlled by the GATOR complex composed of the GATOR1 subcomplex and its inhibitor, the GATOR2 subcomplex, sensitive to amino acid starvation. Previously, we identified fission yeast GATOR1 that prevents deregulated activation of TORC1 (Chia et al., 2017). Here, we report identification and characterization of GATOR2 in fission yeast. Unexpectedly, the GATOR2 subunit Sea3, an ortholog of mammalian WDR59, is physically and functionally proximal to GATOR1, rather than GATOR2, attenuating TORC1 activity. The fission yeast GATOR complex is dispensable for TORC1 regulation in response to amino acid starvation, which instead activates the Gcn2 pathway to inhibit TORC1 and induce autophagy. On the other hand, nitrogen starvation suppresses TORC1 through the combined actions of the GATOR1-Sea3 complex, the Gcn2 pathway, and the TSC complex, another conserved TORC1 inhibitor. Thus, multiple, parallel signaling pathways implement negative regulation of TORC1 to ensure proper cellular starvation responses.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
Autophagy ; 17(3): 826-827, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33475472

RESUMO

Mitophagy is a selective type of autophagy in which damaged or unnecessary mitochondria are sequestered by double-membranous structures called phagophores and delivered to vacuoles/lysosomes for degradation. The molecular mechanisms underlying mitophagy have been studied extensively in budding yeast and mammalian cells. To gain more diverse insights, our recent study identified Atg43 as a mitophagy receptor in the fission yeast Schizosaccharomyces pombe. Atg43 is localized on the mitochondrial outer membrane through the Mim1-Mim2 complex and binds to Atg8, a ubiquitin-like protein conjugated to phagophore membranes. Artificial tethering of Atg8 to mitochondria can bypass the requirement of Atg43 for mitophagy, suggesting that the main role of Atg43 in mitophagy is to stabilize phagophore expansion on mitochondria by interacting with Atg8. Atg43 shares no sequence similarity with mitophagy receptors in other organisms and has a mitophagy-independent function, raising the possibility that Atg43 has acquired the mitophagic function by convergent evolution.


Assuntos
Mitofagia , Schizosaccharomyces , Animais , Autofagossomos , Autofagia , Proteínas Relacionadas à Autofagia , Mitocôndrias
15.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33317697

RESUMO

Mitophagy plays an important role in mitochondrial homeostasis. In yeast, the phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 is essential for mitophagy. This phosphorylation is counteracted by the yeast equivalent of the STRIPAK complex consisting of the PP2A-like protein phosphatase Ppg1 and Far3-7-8-9-10-11 (Far complex), but the underlying mechanism remains elusive. Here we show that two subpopulations of the Far complex reside in the mitochondria and endoplasmic reticulum, respectively, and play distinct roles; the former inhibits mitophagy via Atg32 dephosphorylation, and the latter regulates TORC2 signaling. Ppg1 and Far11 form a subcomplex, and Ppg1 activity is required for the assembling integrity of Ppg1-Far11-Far8. The Far complex preferentially interacts with phosphorylated Atg32, and this interaction is weakened by mitophagy induction. Furthermore, the artificial tethering of Far8 to Atg32 prevents mitophagy. Taken together, the Ppg1-mediated Far complex formation and its dissociation from Atg32 are crucial for mitophagy regulation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Mitocôndrias/enzimologia , Mitofagia , Fosfoproteínas Fosfatases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Relacionadas à Autofagia/genética , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Complexos Multiproteicos , Fosfoproteínas Fosfatases/genética , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
16.
Elife ; 92020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138913

RESUMO

Degradation of mitochondria through mitophagy contributes to the maintenance of mitochondrial function. In this study, we identified that Atg43, a mitochondrial outer membrane protein, serves as a mitophagy receptor in the model organism Schizosaccharomyces pombe to promote the selective degradation of mitochondria. Atg43 contains an Atg8-family-interacting motif essential for mitophagy. Forced recruitment of Atg8 to mitochondria restores mitophagy in Atg43-deficient cells, suggesting that Atg43 tethers expanding isolation membranes to mitochondria. We found that the mitochondrial import factors, including the Mim1-Mim2 complex and Tom70, are crucial for mitophagy. Artificial mitochondrial loading of Atg43 bypasses the requirement of the import factors, suggesting that they contribute to mitophagy through Atg43. Atg43 not only maintains growth ability during starvation but also facilitates vegetative growth through its mitophagy-independent function. Thus, Atg43 is a useful model to study the mechanism and physiological roles, as well as the origin and evolution, of mitophagy in eukaryotes.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Autofagia , Citosol/metabolismo , Evolução Molecular , Membranas Mitocondriais/metabolismo , Domínios Proteicos , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
17.
Sci Rep ; 10(1): 1465, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001742

RESUMO

Mitophagy plays an important role in the maintenance of mitochondrial homeostasis. PTEN-induced kinase (PINK1), a key regulator of mitophagy, is degraded constitutively under steady-state conditions. During mitophagy, it becomes stabilized in the outer mitochondrial membrane, particularly under mitochondrial stress conditions, such as in treatment with uncouplers, generation of excessive mitochondrial reactive oxygen species, and formation of protein aggregates in mitochondria. Stabilized PINK1 recruits and activates E3 ligases, such as Parkin and mitochondrial ubiquitin ligase (MUL1), to ubiquitinate mitochondrial proteins and induce ubiquitin-mediated mitophagy. Here, we found that the anticancer drug gemcitabine induces the stabilization of PINK1 and subsequent mitophagy, even in the absence of Parkin. We also found that gemcitabine-induced stabilization of PINK1 was not accompanied by mitochondrial depolarization. Interestingly, the stabilization of PINK1 was mediated by MUL1. These results suggest that gemcitabine induces mitophagy through MUL1-mediated stabilization of PINK1 on the mitochondrial membrane independently of mitochondrial depolarization.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Desoxicitidina/farmacologia , Células HeLa , Humanos , Immunoblotting , Mitocôndrias/enzimologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Gencitabina
18.
Cell Rep ; 23(12): 3579-3590, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29925000

RESUMO

Mitophagy plays an important role in mitochondrial quality control. In yeast, phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 (CK2) upon induction of mitophagy is a prerequisite for interaction of Atg32 with Atg11 (an adaptor protein for selective autophagy) and following delivery of mitochondria to the vacuole for degradation. Because CK2 is constitutively active, Atg32 phosphorylation must be precisely regulated to prevent unrequired mitophagy. We found that the PP2A (protein phosphatase 2A)-like protein phosphatase Ppg1 was essential for dephosphorylation of Atg32 and inhibited mitophagy. We identified the Far complex proteins, Far3, Far7, Far8, Far9, Far10, and Far11, as Ppg1-binding proteins. Deletion of Ppg1 or Far proteins accelerated mitophagy. Deletion of a cytoplasmic region (amino acid residues 151-200) of Atg32 caused the same phenotypes as in ppg1Δ cells, which suggested that dephosphorylation of Atg32 by Ppg1 required this region. Therefore, Ppg1 and the Far complex cooperatively dephosphorylate Atg32 to prevent excessive mitophagy.


Assuntos
Caseína Quinase II/metabolismo , Mitofagia , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Citosol/metabolismo , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Autophagy ; 14(6): 1105-1106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799770

RESUMO

Target of rapamycin complex 1 (TORC1) is an evolutionarily conserved protein kinase complex, whose activation in response to nutrients suppresses autophagy. In mammalian cells, amino-acid stimuli induce lysosomal translocation and activation of MTORC1 through the RRAG GTPase heterodimer, which is tethered to the surface of lysosomes by the Ragulator complex. Our recent study demonstrated that the fission yeast Schizosaccharomyces pombe also has a Ragulator complex that anchors the Gtr1-Gtr2 Rag GTPase heterodimer to the vacuole, a lysosome-like organelle. Unexpectedly, however, neither vacuolar localization nor activation of TORC1 is dependent on the Rag-Ragulator complex, which instead plays a critical role in attenuating TORC1 signaling. Our findings suggest dual functionality of the Rag GTPase in both activation and inactivation of TORC1.


Assuntos
Autofagia , Proteínas Monoméricas de Ligação ao GTP , Schizosaccharomyces , Animais , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
20.
J Cell Sci ; 131(6)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29437857

RESUMO

In somatic cells, H2afx and Mdc1 are close functional partners in DNA repair and damage response. However, it is not known whether they are also involved in the maintenance of genome integrity in meiosis. By analyzing chromosome dynamics in H2afx-/- spermatocytes, we found that the synapsis of autosomes and X-Y chromosomes was impaired in a fraction of cells. Such defects correlated with an abnormal recombination profile. Conversely, Mdc1 was dispensable for the synapsis of the autosomes and played only a minor role in X-Y synapsis, compared with the action of H2afx This suggested that those genes have non-overlapping functions in chromosome synapsis. However, we observed that both genes play a similar role in the assembly of MLH3 onto chromosomes, a key step in crossover formation. Moreover, we show that H2afx and Mdc1 cooperate in promoting the activation of the recombination-dependent checkpoint, a mechanism that restrains the differentiation of cells with unrepaired DSBs. This occurs by a mechanism that involves P53. Overall, our data show that, in male germ cells, H2afx and Mdc1 promote the maintenance of genome integrity.This article has an associated First Person interview with the first author of the paper.


Assuntos
Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espermatócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Pareamento Cromossômico , Instabilidade Genômica , Genômica , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas MutL/genética , Proteínas MutL/metabolismo , Recombinação Genética , Cromossomos Sexuais/genética , Cromossomos Sexuais/metabolismo , Espermatócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...