Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(32)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38657633

RESUMO

We experimentally investigate the charge-spin interconversion by introducing a lighter impurity, namely nitrogen (N) into Pt by varying the nitrogen gas flow rate,Qfrom 0 to 20%, and studying the Onsager reciprocity of spin Hall effect (SHE) via complementary methods of spin-torque ferromagnetic resonance and spin-pumping inverse SHE measurements, respectively. We notice a reduction in the crystalline nature of Pt upon nitrogen incorporation. We observe the influence of extrinsic side-jump scattering induced SHE by measuring the spin Hall efficiency,θSHin a wide temperature range from 10 to 296 K. This work establishes the incorporation of N in Pt by using sputtering, to enhance the SHE via extrinsic scattering as well as to observe the reciprocal effects of charge-spin interconversion.

2.
Sci Rep ; 13(1): 7909, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193725

RESUMO

The inherent nonlinear magnetization dynamics in spintronic devices make them suitable candidates for neuromorphic hardware. Among spintronic devices, spin torque oscillators such as spin transfer torque oscillators and spin Hall oscillators have shown the capability to perform recognition tasks. In this paper, with the help of micromagnetic simulations, we model and demonstrate that the magnetization dynamics of a single spin Hall oscillator can be nonlinearly transformed by harnessing input pulse streams and can be utilized for classification tasks. The spin Hall oscillator utilizes the microwave spectral characteristics of its magnetization dynamics for processing a binary data input. The spectral change due to the nonlinear magnetization dynamics assists in real-time feature extraction and classification of 4-binary digit input patterns. The performance was tested for the classification of the standard MNIST handwritten digit data set and achieved an accuracy of 83.1% in a simple linear regression model. Our results suggest that modulating time-driven input data can generate diverse magnetization dynamics in the spin Hall oscillator that can be suitable for temporal or sequential information processing.

3.
J Phys Condens Matter ; 35(21)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898153

RESUMO

Excitation of magnetization dynamics in magnetic materials, especially in ultrathin ferromagnetic films, is of utmost importance for developing various ultrafast spintronics devices. Recently, the excitation of magnetization dynamics, i.e. ferromagnetic resonance (FMR) via electric field-induced modulation of interfacial magnetic anisotropies, has received particular attention due to several advantages, including lower power consumption. However, several additional torques generated by unavoidable microwave current induced because of the capacitive nature of the junctions may also contribute to the excitation of FMR apart from electric field-induced torques. Here, we study the FMR signals excited by applying microwave signal across the metal-oxide junction in CoFeB/MgO heterostructures with Pt and Ta buffer layers. Analysis of the resonance line shape and angular dependent behavior of resonance amplitude revealed that apart from voltage-controlled in-plane magnetic anisotropy (VC-IMA) torque a significant contribution can also arises from spin-torques and Oersted field torques originating from the flow of microwave current through metal-oxide junction. Surprisingly, the overall contribution from spin-torques and Oersted field torques are comparable to the VC-IMA torque contribution, even for a device with negligible defects. This study will be beneficial for designing future electric field-controlled spintronics devices.

4.
Acc Chem Res ; 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34339603

RESUMO

ConspectusIn this Account, we describe the challenges and promising applications of transmission electron microscopy (TEM) imaging and spectroscopy at cryogenic temperatures. Our work focuses on two areas of application: the delay of electron-beam-induced degradation and following low-temperature phenomena in a continuous and variable temperature range. For the former, we present a study of LiMn1.5Ni0.5O4 lithium ion battery cathode material that undergoes electron beam-induced degradation when studied at room temperature by TEM. Cryogenic imaging reveals the true structure of LiMn1.5Ni0.5O4 nanoparticles in their discharged state. Improved stability under electron beam irradiation was confirmed by following the evolution of the O K-edge fine structure by electron energy-loss spectroscopy. Our results demonstrate that the effect of radiation damage on discharged LiMn1.5Ni0.5O4 was previously underestimated and that atomic-resolution imaging at cryogenic temperature has a potential to be generalized to most of the Li-based materials and beyond. For the latter, we present two studies in the imaging of low-temperature phenomena on the local scale, namely, the evolution of ferroelectric and ferromagnetic domains walls, in BaTiO3 and Y3Fe5O12 systems, respectively, in a continuous and variable temperature range. Continuous imaging of the phase transition in BaTiO3, a prototypical ferroelectric system, from the low-temperature orthorhombic phase continuously up to the centrosymmetric high-temperature phase is shown to be possible inside a TEM. Similarly, the propagation of domain walls in Y3Fe5O12, a magnetic insulator, is studied from ∼120 to ∼400 K and combined with the application of a magnetic field and electrical current pulses to mimic the operando conditions as in domain wall memory and logic devices for information technology. Such studies are promising for studying the pinning of the ferroelectric and magnetic domains versus temperature, spin-polarized current, and externally applied magnetic field to better manipulate the domain walls. The capability of combining operando TEM stimuli such as current, voltage, and/or magnetic field with in situ TEM imaging in a continuous cryogenic temperature range will allow the uncovering of fundamental phenomena on the nanometer scale. These studies were made possible using a MEMS-based TEM holder that allowed an electron-transparent sample to be transferred and electrically contacted on a MEMS chip. The six-contact double-tilt holder allows the alignment of the specimen into its zone axis while simultaneously using four electrical contacts to regulate the temperature and two contacts to apply the electrical stimuli, i.e., operando TEM imaging. This Account leads to the demonstration of (i) the high-resolution imaging and spectroscopy of nanoparticles oriented in the desired [110] zone-axis direction at cryogenic temperatures to mitigate the electron beam degradation, (ii) imaging of low-temperature transitions with accurate and continuous control of the temperature that allowed single-frame observation of the presence of both the orthorhombic and tetragonal phases in the BaTiO3 system, and (iii) magnetic domain wall propagation as a function of temperature, magnetic field, and current pulses (100 ns with a 100 kHz repetition rate) in the Y3Fe5O12 system.

5.
ACS Appl Mater Interfaces ; 12(37): 41802-41809, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32819087

RESUMO

The atomically flat interface of the Y3Fe5O12 (YIG) thin film and the Gd3Ga5O12 (GGG) substrate plays a vital role in obtaining the magnetization dynamics of YIG below and above the anisotropy field. Here, magnetoimpedance (MI) is used to investigate the magnetization dynamics in fully epitaxial 45 nm YIG thin films grown on the GGG (001) substrates using a copper strip coil in the MHz-GHz frequency region. The resistance (R) and reactance (X), which are components of impedance (Z), allow us to probe the absorptive and dispersive components of the dynamic permeability, whereas a conventional spectrometer only measures the field derivative of the power absorbed. The distinct excitation modes arising from the resonance in the uniform and dragged magnetization states of YIG are respectively observed above and below the anisotropy field. The magnetodynamics clearly shows the visible dichotomy between two resonant fields below and above the anisotropy field and its motion as a function of the direction of the applied magnetic field. A low value of a damping factor of ∼4.7 - 6.1 × 10-4 is estimated for uniform excitation mode with an anisotropy field of 65 ± 2 Oe. Investigation of below and above anisotropy field-dependent magnetodynamics in the low-frequency mode can be useful in designing the YIG-based resonators, oscillators, filters, and magnonic devices.

6.
Sci Rep ; 7(1): 2318, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28539602

RESUMO

Voltage or electric field induced magnetization dynamics promises low power spintronics devices. For successful operation of some spintronics devices such as magnetic oscillators and magnetization switching devices a clear understanding of nonlinear magnetization dynamics is required. Here, we report a detailed experimental and micromagnetic simulation study about the effect of excitation power on voltage induced local magnetization dynamics in an ultrathin CoFeB film. Experimental results show that the resonance line-width and frequency remains constant, whereas cone angle of the magnetization precession increases linearly with square-root of excitation power below threshold value, known as linear excitation regime. Above threshold power, the dynamics enters into nonlinear regime where resonance line-width monotonically increases and resonance frequency monotonically decreases with increasing excitation power. Simulation results reveal that a strong nonlinear and incoherent magnetization dynamics are observed in our experiment above the threshold power which reduces dynamic magnetic signal by suppressing large cone angle of magnetization precession. Moreover, a significant transfer of spin angular momentum from uniform FMR mode to its degenerate spin waves outside of excitation area further restrict the cone angle of precession within only few degrees in our device. Our results will be very useful to develop all-voltage-controlled spintronics devices.

7.
Sci Rep ; 7: 42511, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209976

RESUMO

Recent progress in magnetic tunnel junctions (MTJs) with a perpendicular easy axis consisting of CoFeB and MgO stacking structures has shown that magnetization dynamics are induced due to voltage-controlled magnetic anisotropy (VCMA), which will potentially lead to future low-power-consumption information technology. For manipulating magnetizations in MTJs by applying voltage, it is necessary to understand the coupled magnetization motion of two magnetic (recording and reference) layers. In this report, we focus on the magnetization motion of two magnetic layers in MTJs consisting of top layers with an in-plane easy axis and bottom layers with a perpendicular easy axis, both having perpendicular magnetic anisotropy. According to rectified voltage (Vrec) measurements, the amplitude of the magnetization motion depends on the initial angles of the magnetizations with respect to the VCMA direction. Our numerical simulations involving the micromagnetic method based on the Landau-Lifshitz-Gilbert equation of motion indicate that the magnetization motion in both layers is induced by a combination of VCMA and transferred angular momentum, even though the magnetic easy axes of the two layers are different. Our study will lead to the development of voltage-controlled MTJs having perpendicular magnetic anisotropy by controlling the initial angle between magnetizations and VCMA directions.

8.
Nat Commun ; 4: 2893, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24327053

RESUMO

Devices based on pure spin currents have been attracting increasing attention as key ingredients for low-dissipation electronics. To integrate such spintronics devices into charge-based technologies, electric detection of spin currents is essential. The inverse spin Hall effect converts a spin current into an electric voltage through spin-orbit coupling. Noble metals such as Pt and Pd, and also Cu-based alloys, have been regarded as potential materials for a spin-current injector, owing to the large direct spin Hall effect. Their spin Hall resistivity ρSH, representing the performance as a detector, is not large enough, however, due mainly because of their low charge resistivity. Here we report that a binary 5d transition metal oxide, iridium oxide, overcomes the limitations encountered in noble metals and Cu-based alloys and shows a very large ρSH~38 µΩ cm at room temperature.

9.
Sci Rep ; 2: 628, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22953049

RESUMO

Non-local spin injection in lateral spin valves generates a pure spin current which is a diffusive flow of spins (i.e. spin angular momentums) with no net charge flow. The diffusive spins lose phase coherency in precession while undergoing frequent collisions and these events lead to a broad distribution of the dwell time in a transport channel between the injector and the detector. Here we show the lateral spin-valves with dual injectors enable us to detect a genuine in-plane precession signal from the Hanle effect, demonstrating the phase coherency in the in-plane precession is improved with an increase of the channel length. The coherency in the spin precession shows a universal behavior as a function of the normalized separation between the injector and the detector in material-independent fashion for metals and semiconductors including graphene.

10.
ACS Nano ; 6(4): 3397-403, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22443955

RESUMO

We report the time-domain measurements of optically induced precessional dynamics in a series of Co antidot lattices with fixed antidot diameter of 100 nm and with varying lattice constants (S) between 200 and 500 nm. For the sparsest lattice, we observe two bands of precessional modes with a band gap, which increases substantially with the decrease in S down to 300 nm. At S = 200 nm, four distinct bands with significant band gaps appear. The numerically calculated mode profiles show various localized and extended modes with the propagation direction perpendicular to the bias magnetic field. We numerically demonstrate some composite antidot structures with very rich magnonic spectra spreading between 3 and 27 GHz based upon the above experimental observation.

11.
ACS Nano ; 5(12): 9559-65, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22035409

RESUMO

We report an all-optical time-domain detection of picosecond magnetization dynamics of arrays of 50 nm Ni(80)Fe(20) (permalloy) dots down to the single nanodot regime. In the single nanodot regime the dynamics reveals one dominant resonant mode corresponding to the edge mode of the 50 nm dot with slightly higher damping than that of the unpatterned thin film. With the increase in areal density of the array both the precession frequency and damping increase significantly due to the increase in magnetostatic interactions between the nanodots, and a mode splitting and sudden jump in apparent damping are observed at an edge-to-edge separation of 50 nm.


Assuntos
Magnetismo/instrumentação , Teste de Materiais/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
12.
Phys Rev Lett ; 106(19): 197203, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668196

RESUMO

We here experimentally demonstrate that gyration modes of coupled vortices can be resonantly excited primarily by the ac current in a pair of ferromagnetic disks with variable separation. The sole gyration mode clearly splits into higher and lower frequency modes via dipolar interaction, where the main mode splitting is due to a chirality sensitive phase difference in gyrations of the coupled vortices, whereas the magnitude of the splitting is determined by their polarity configuration. These experimental results show that the coupled pair of vortices behaves similar to a diatomic molecule with bonding and antibonding states, implying a possibility for designing the magnonic band structure in a chain or an array of magnetic vortex oscillators.

13.
Nat Mater ; 10(7): 527-31, 2011 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-21666680

RESUMO

The non-local spin injection in lateral spin valves is strongly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin-valve voltage, which determines the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 µV. Here we show that lateral spin valves with low-resistivity NiFe/MgO/Ag junctions enable efficient spin injection with high applied current density, which leads to the spin-valve voltage increasing 100-fold. Hanle effect measurements demonstrate a long-distance collective 2π spin precession along a 6-µm-long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin-current-based memory, logic and sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...