Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
FASEB J ; 38(7): e23608, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593315

RESUMO

Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.


Assuntos
Cálcio , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Ameloblastos/metabolismo , Cálcio/metabolismo , Diferenciação Celular , Células Epiteliais , Odontogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo
2.
FASEB Bioadv ; 5(12): 507-520, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094157

RESUMO

Mutations in the gene encoding the transient receptor potential vanilloid member 4 (TRPV4), a Ca2+ permeable nonselective cation channel, cause TRPV4-related disorders. TRPV4 is widely expressed in the brain; however, the pathogenesis underlying TRPV4-mediated Ca2+ deregulation in neurodevelopment remains unresolved and an effective therapeutic strategy remains to be established. These issues were addressed by isolating mutant dental pulp stem cells from a tooth donated by a child diagnosed with metatropic dysplasia with neurodevelopmental comorbidities caused by a gain-of-function TRPV4 mutation, c.1855C > T (p.L619F). The mutation was repaired using CRISPR/Cas9 to generate corrected isogenic stem cells. These stem cells were differentiated into dopaminergic neurons and the pharmacological effects of folic acid were examined. In mutant neurons, constitutively elevated cytosolic Ca2+ augmented AKT-mediated α-synuclein (α-syn) induction, resulting in mitochondrial Ca2+ accumulation and dysfunction. The TRPV4 antagonist, AKT inhibitor, or α-syn knockdown, normalizes the mitochondrial Ca2+ levels in mutant neurons, suggesting the importance of mutant TRPV4/Ca2+/AKT-induced α-syn in mitochondrial Ca2+ accumulation. Folic acid was effective in normalizing mitochondrial Ca2+ levels via the transcriptional repression of α-syn and improving mitochondrial reactive oxygen species levels, adenosine triphosphate synthesis, and neurite outgrowth of mutant neurons. This study provides new insights into the neuropathological mechanisms underlying TRPV4-related disorders and related therapeutic strategies.

3.
Biochem Biophys Res Commun ; 682: 39-45, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37801988

RESUMO

Cells sense and respond to extracellular mechanical stress through mechanotransduction receptors and ion channels, which regulate cellular behaviors such as cell proliferation and differentiation. Among them, PIEZO1, piezo-type mechanosensitive ion channel component 1, has recently been highlighted as a mechanosensitive ion channel in various cell types including mesenchymal stem cells. We previously reported that PIEZO1 is essential for ERK1/2 phosphorylation and osteoblast differentiation in bone marrow-derived mesenchymal stem cells (BMSCs), induced by hydrostatic pressure loading and treatment with the PIEZO1-specific activator Yoda1. However, the molecular mechanism underlying how PIEZO1 induces mechanotransduction remains unclear. In this study, we investigated that the role of the C-terminus in regulating extracellular Ca2+ influx and activating the ERK1/2 signaling pathway. We observed the activation of Fluo-4 AM in the Yoda1-stimulated human BMSC line UE7T-13, but not in a calcium-depleted cell culture medium. Similarly, Western blotting analysis revealed that Yoda1 treatment induced ERK1/2 phosphorylation, but this induction was not observed in calcium-depleted cell culture medium. To investigate the functional role of the C-terminus of PIEZO1, we generated HEK293 cells stably expressing the full-length mouse PIEZO1 (PIEZO1-FL) and a deletion-type PIEZO1 lacking the C-terminal intracellular region containing the R-Ras-binding domain (PIEZO1-ΔR-Ras). We found that Yoda1 treatment predominantly activated Flou-4 AM and ERK1/2 in PIEZO1-FL-trasfected cells but neither in PIEZO1-ΔR-Ras-transfected cells nor control cells. Our results indicate that the C-terminus of PIEZO1, which contains the R-Ras binding domain, plays an essential role in Ca2+ influx and activation of the ERK1/2 signaling pathway, suggesting that this domain is crucial for the mechanotransduction of osteoblastic differentiation in BMSCs.


Assuntos
Sistema de Sinalização das MAP Quinases , Mecanotransdução Celular , Humanos , Camundongos , Animais , Mecanotransdução Celular/fisiologia , Cálcio/metabolismo , Células HEK293 , Transdução de Sinais , Canais Iônicos/metabolismo , Cálcio da Dieta
4.
Biochem Biophys Res Commun ; 681: 7-12, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37742475

RESUMO

Melatonin entrainment of suprachiasmatic nucleus-regulating circadian rhythms is mediated by MT1 and MT2 receptors. Melatonin also has neuroprotective and mitochondrial activating effects, suggesting it may affect neurodevelopment. We studied melatonin's pharmacological effects on autism spectrum disorder (ASD) neuropathology. Deciduous tooth-derived stem cells from children with ASD were used to model neurodevelopmental defects and differentiated into dopaminergic neurons (ASD-DNs) with or without melatonin. Without melatonin, ASD-DNs had reduced neurite outgrowth, mitochondrial dysfunction, lower mitochondrial Ca2+ levels, and Ca2+ accumulation in the endoplasmic reticulum (ER) compared to control DNs from typically developing children-derived stem cells. Melatonin enhanced IP3-dependent Ca2+ release from ER to mitochondria, improving mitochondrial function and neurite outgrowth in ASD-DNs. Luzindole, an MT1/MT2 antagonist, blocked these effects. Thus, melatonin supplementation may improve dopaminergic system development in ASD by modulating mitochondrial Ca2+ homeostasis via MT1/MT2 receptors.

5.
Biochem Biophys Res Commun ; 679: 167-174, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37703759

RESUMO

Murine tooth germ development proceeds in continuous sequential steps with reciprocal interactions between the odontogenic epithelium and the adjacent mesenchyme, and several growth factor signaling pathways and their activation are required for tooth germ development. The expression of ADP-ribosylation factor (Arf)-like 4c (Arl4c) has been shown to induce cell proliferation, and is thereby involved in epithelial morphogenesis and tumorigenesis. In contrast, the other functions of Arl4c (in addition to cellular growth) are largely unknown. Although we recently demonstrated the involvement of the upregulated expression of Arl4c in the proliferation of ameloblastomas, which have the same origin as odontogenic epithelium, its effect on tooth germ development remains unclear. In the present study, single-cell RNA sequencing (scRNA-seq) analysis revealed that the expression of Arl4c, among 17 members of the Arf-family, was specifically detected in odontogenic epithelial cells, such as those of the stratum intermedium, stellate reticulum and outer enamel epithelium, of postnatal day 1 (P1) mouse molars. scRNA-seq analysis also demonstrated the higher expression of Arl4c in non-ameloblast and inner enamel epithelium, which include immature cells, of P7 mouse incisors. In the mouse tooth germ rudiment culture, treatment with SecinH3 (an inhibitor of the ARNO/Arf6 pathway) reduced the size, width and cusp height of the tooth germ and the thickness of the eosinophilic layer, which would involve the synthesis of dentin and enamel matrix organization. In addition, loss-of-function experiments using siRNAs and shRNA revealed that the expression of Arl4c was involved in cell proliferation and osteoblastic cytodifferentiation in odontogenic epithelial cells. Finally, RNA-seq analysis with a gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that osteoblastic differentiation-related gene sets and/or GO terms were downregulated in shArl4c-expressing odontogenic epithelial cells. These results suggest that the Arl4c-ARNO/Arf6 pathway axis contributes to tooth germ development through osteoblastic/ameloblastic differentiation.


Assuntos
Ameloblastoma , Dente , Camundongos , Animais , Germe de Dente , Células Epiteliais/metabolismo , Epitélio/metabolismo , Ameloblastoma/metabolismo , Diferenciação Celular , Dente/metabolismo
6.
Commun Biol ; 6(1): 766, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479880

RESUMO

Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.


Assuntos
Cabelo , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Epiderme , Fatores de Transcrição/genética , Esmalte Dentário
7.
J Biol Chem ; 299(5): 104638, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963497

RESUMO

Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.


Assuntos
Diferenciação Celular , Proteínas Ligadas por GPI , Odontoblastos , Odontogênese , Animais , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Microdomínios da Membrana/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Domínios Proteicos
8.
FASEB J ; 37(4): e22861, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929047

RESUMO

Enamel is formed by the repetitive secretion of a tooth-specific extracellular matrix and its decomposition. Calcification of the enamel matrix via hydroxyapatite (HAP) maturation requires pH cycling to be tightly regulated through the neutralization of protons released during HAP synthesis. We found that Gpr115, which responds to changes in extracellular pH, plays an important role in enamel formation. Gpr115-deficient mice show partial enamel hypomineralization, suggesting that other pH-responsive molecules may be involved. In this study, we focused on the role of Gpr111/Adgrf2, a duplicate gene of Gpr115, in tooth development. Gpr111 was highly expressed in mature ameloblasts. Gpr111-KO mice showed enamel hypomineralization. Dysplasia of enamel rods and high carbon content seen in Gpr111-deficient mice suggested the presence of residual enamel matrices in enamel. Depletion of Gpr111 in dental epithelial cells induced the expression of ameloblast-specific protease, kallikrein-related peptidase 4 (Klk4), suggesting that Gpr111 may act as a suppressor of Klk4 expression. Moreover, reduction of extracellular pH to 6.8 suppressed the expression of Gpr111, while the converse increased Klk4 expression. Such induction of Klk4 was synergistically enhanced by Gpr111 knockdown, suggesting that proper enamel mineralization may be linked to the modulation of Klk4 expression by Gpr111. Furthermore, our in vitro suppression of Gpr111 and Gpr115 expression indicated that their suppressive effect on calcification was additive. These results suggest that both Gpr111 and Gpr115 respond to extracellular pH, contribute to the expression of proteolytic enzymes, and regulate the pH cycle, thereby playing important roles in enamel formation.


Assuntos
Hipomineralização do Esmalte Dentário , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ameloblastos/metabolismo , Hipomineralização do Esmalte Dentário/genética , Hipomineralização do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Concentração de Íons de Hidrogênio , Calicreínas/metabolismo , Receptores Acoplados a Proteínas G/genética
9.
Biochem Biophys Res Commun ; 650: 47-54, 2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-36773339

RESUMO

Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Odontoblastos/metabolismo , Genes Homeobox , Diferenciação Celular , Proliferação de Células
10.
Sci Rep ; 13(1): 3354, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849572

RESUMO

Recent advances in regenerative technology have made the regeneration of various organs using pluripotent stem cells possible. However, a simpler screening method for evaluating regenerated organs is required to apply this technology to clinical regenerative medicine in the future. We have developed a simple evaluation method using a mouse tooth germ culture model of organs formed by epithelial-mesenchymal interactions. In this study, we successfully established a simple method that controls tissue development in a temperature-dependent manner using a mouse tooth germ ex vivo culture model. We observed that the development of the cultured tooth germ could be delayed by low-temperature culture and resumed by the subsequent culture at 37 °C. Furthermore, the optimal temperature for the long-term preservation of tooth germ was 25 °C, a subnormothermic temperature that maintains the expression of stem cell markers. We also found that subnormothermic temperature induces the expression of cold shock proteins, such as cold-inducible RNA-binding protein, RNA-binding motif protein 3, and serine and arginine rich splicing factor 5. This study provides a simple screening method to help establish the development of regenerative tissue technology using a tooth organ culture model. Our findings may be potentially useful for making advances in the field of regenerative medicine.


Assuntos
Arginina , Proteínas e Peptídeos de Choque Frio , Animais , Técnicas de Cultura de Órgãos , Temperatura Baixa , Modelos Animais de Doenças
11.
Oral Dis ; 29(8): 3654-3664, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35836351

RESUMO

OBJECTIVES: To investigate the detailed ultrastructural patterns of dental abnormalities affected by Axenfeld-Rieger syndrome (ARS) with a heterozygous microdeletion involving paired-like homeodomain 2 (PITX2) and explored the underlying molecular mechanisms driving enamel defects. SUBJECTS AND METHODS: Sanger sequencing, genomic quantitative PCR analysis, and chromosomal microarray analysis (CMA) were used to screen the disease-causing mutation in one ARS proband. An exfoliated tooth from an ARS patient was analyzed with scanning electron microscopy and micro-computerized tomography. A stable Pitx2 knockdown cell line was generated to simulate PITX2 haploinsufficiency. Cell proliferation and ameloblast differentiation were analyzed, and the role of the Wnt/ß-catenin pathway in proliferation of ameloblast precursor cells was investigated. RESULTS: An approximately 0.216 Mb novel deletion encompassing PITX2 was identified. The affected tooth displayed a thinner and broken layer of enamel and abnormal enamel biomineralization. PITX2 downregulation inhibited the proliferation and differentiation of inner enamel epithelial cells, and LiCl stifmulation partially reversed the proliferation ability after Pitx2 knockdown. CONCLUSIONS: Enamel formation is disturbed in some patients with ARS. Pitx2 knockdown can influence the proliferation and ameloblast differentiation of inner enamel epithelial cells, and PITX2 may regulate cell proliferation via Wnt/ß-catenin signaling pathway.


Assuntos
Doenças Dentárias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Segmento Anterior do Olho , Esmalte Dentário
12.
J Oral Biosci ; 64(4): 400-409, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270608

RESUMO

OBJECTIVES: Epithelial-mesenchymal interactions are extremely important in tooth development and essential for ameloblast differentiation, especially during tooth formation. We aimed to identify the type of mesenchymal cells important in ameloblast differentiation. METHODS: We used two types of cell culture systems with chambers and found that a subset of debtal mesenchimal cells is important for the differentiatiuon of dental spithelial cells into ameloblasts. Further, we induced dental pulp stem cell-like cells from dental pulp stem cells using the small molecule compound BIO ( a GSK-3 inhibitor IX) to clarify the mechanism involved in ameloblast differentiation induced by dental pulp stem cells. RESULTS: The BIO-induced dental pulp cells promoted the expression of mesenchymal stem cell markers Oct3/4 and Bcrp1. Furthermore, we used artificial dental pulp stem cells induced by BIO to identify the molecules expressed in dental pulp stem cells required for ameloblast differentiation. Panx3 expression was induced in the dental pulp stem cell through interaction with the dental epithelial cells. In addition, ATP release from cells increased in Panx3-expressing cells. We also confirmed that ATP stimulation is accepted in dental epithelial cells. CONCLUSIONS: These results showed that the Panx3 expressed in dental pulp stem cells is important for ameloblast differentiation and that ATP release by Panx3 may play a role in epithelial-mesenchymal interaction.


Assuntos
Ameloblastos , Células-Tronco Mesenquimais , Ameloblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Antioxidants (Basel) ; 11(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883852

RESUMO

Mitochondrial fission factor (MFF) is an adapter that targets dynamin-related protein 1 from the cytosol to the mitochondria for fission. Loss-of-function MFF mutations cause encephalopathy due to defective mitochondrial and peroxisomal fission 2 (EMPF2). To elucidate the molecular mechanisms that were involved, we analyzed the functional effects of MFF depletion in deciduous teeth-derived dental pulp stem cells differentiating into dopaminergic neurons (DNs). When treated with MFF-targeting small interfering RNA, DNs showed impaired neurite outgrowth and reduced mitochondrial signals in neurites harboring elongated mitochondria. MFF silencing also caused mitochondrial Ca2+ accumulation through accelerated Ca2+ influx from the endoplasmic reticulum (ER) via the inositol 1,4,5-trisphosphate receptor. Mitochondrial Ca2+ overload led DNs to produce excessive reactive oxygen species (ROS), and downregulated peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1α). MFF was co-immunoprecipitated with voltage-dependent anion channel 1, an essential component of the ER-mitochondrial Ca2+ transport system. Folic acid supplementation normalized ROS levels, PGC-1α mediated mitochondrial biogenesis, and neurite outgrowth in MFF depleted DNs, without affecting their mitochondrial morphology or Ca2+ levels. We propose that MFF negatively regulates the mitochondrial Ca2+ influx from the ER. MFF-insufficiency recapitulated the EMPF2 neuropathology with increased oxidative stress and suppressed mitochondrial biogenesis. ROS and mitochondrial biogenesis might be potential therapeutic targets for EMPF2.

14.
Materials (Basel) ; 15(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897604

RESUMO

Recently, the development of dental materials has increased the availability of various hyperesthesia desensitizers. However, there are no studies on the duration of retreatment in terms of adherence rates. Thus, the adhesion rates of resin-based desensitizers were investigated. We used a conventional desensitizer and a recently developed desensitizer containing calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP). These colored agents were applied to the surfaces of premolars and molars, and the area was measured from weekly oral photographs. Areas were statistically analyzed and mean values were calculated using 95% confidence intervals. A p-value of <0.05 was considered statistically significant. These rates were significantly higher on the buccal side of the maxilla and lower on the lingual side of the maxilla. In addition, the desensitizer containing C-MET and MDCP displayed significantly higher adhesion rates. It is suggested that this will require monthly follow-ups and reevaluation because both agents cause less than 10% adherence and there is almost no sealing effect after 4 weeks. In addition, the significantly higher adhesion rate of the desensitizer containing C-MET and MDCP indicated that the novel monomer contributed to the improvement in the adhesion ability.

15.
FASEB Bioadv ; 4(7): 454-467, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35812076

RESUMO

Down syndrome (DS) is one of the common genetic disorders caused by the trisomy of human chromosome 21 (HSA21). Mitochondrial dysfunction and redox imbalance play important roles in DS pathology, and altered dopaminergic regulation has been demonstrated in the brain of individuals with DS. However, the pathological association of these elements is not yet fully understood. In this study, we analyzed dopaminergic neurons (DNs) differentiated from deciduous teeth-derived stem cells of children with DS or healthy control children. As previously observed in the analysis of a single case of DS, compared to controls, patient-derived DNs (DS-DNs) displayed shorter neurite outgrowth and fewer branches, as well as downregulated vesicular monoamine transporter 2 and upregulated dopamine transporter 1, both of which are key regulators of dopamine homeostasis in DNs. In agreement with these expression profiles, DS-DNs accumulated dopamine intracellularly and had increased levels of cellular and mitochondrial reactive oxygen species (ROS). DS-DNs showed downregulation of non-canonical Notch ligand, delta-like 1, which may contribute to dopamine accumulation and increased ROS levels through DAT1 upregulation. Furthermore, DS-DNs showed mitochondrial dysfunction in consistent with lower expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and upregulation of a HSA21-encoded negative regulator of PGC-1α, nuclear receptor-interacting protein 1. These results suggest that dysregulated dopamine homeostasis may participate in oxidative stress and mitochondrial dysfunction of the dopaminergic system in DS.

16.
Sci Rep ; 12(1): 3093, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197531

RESUMO

Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.


Assuntos
Antineoplásicos/efeitos adversos , Ciclofosfamida/efeitos adversos , Temperatura , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Modelos Biológicos , Técnicas de Cultura de Órgãos
17.
J Cell Physiol ; 237(2): 1597-1606, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34812512

RESUMO

Tissue-specific basic helix-loop-helix (bHLH) transcription factors play an important role in cellular differentiation. We recently identified AmeloD as a tooth-specific bHLH transcription factor. However, the role of AmeloD in cellular differentiation has not been investigated. The aim of this study was to elucidate the role of AmeloD in dental epithelial cell differentiation. We found that AmeloD-knockout (AmeloD-KO) mice developed an abnormal structure and altered ion composition of enamel in molars, suggesting that AmeloD-KO mice developed enamel hypoplasia. In molars of AmeloD-KO mice, the transcription factor Sox21 encoding SRY-Box transcription factor 21 and ameloblast differentiation marker genes were significantly downregulated. Furthermore, overexpression of AmeloD in the dental epithelial cell line M3H1 upregulated Sox21 and ameloblast differentiation marker genes, indicating that AmeloD is critical for ameloblast differentiation. Our study demonstrated that AmeloD is an important transcription factor in amelogenesis for promoting ameloblast differentiation. This study provides new insights into the mechanisms of amelogenesis.


Assuntos
Ameloblastos , Dente , Fatores Genéricos de Transcrição/metabolismo , Ameloblastos/metabolismo , Amelogênese/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
18.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957547

RESUMO

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Assuntos
Ameloblastos , Diferenciação Celular , Esmalte Dentário , Proteínas da Matriz Extracelular , Ameloblastos/citologia , Animais , Caderinas/genética , Caderinas/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Knockout
19.
Children (Basel) ; 8(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943385

RESUMO

BACKGROUND: Recently, tooth deformities have been frequently encountered by pediatric dentists. Severe enamel hypomineralization sometimes induces pain such as hyperesthesia, but composite resin restoration is difficult because it often detaches without any cavity preparation. Resin-based hypersensitivity inhibitors for tooth physically seal the dentinal tubules. It was reported that hypersensitivity inhibitor containing novel adhesive monomers forms apatite and induces remineralization in vitro. Therefore, these case series assessed the clinical effects of remineralization and the suppression of hypersensitivity by Bio Coat Ca (Sun Medical, Shiga, Japan). METHODS: After mechanical tooth cleaning was performed, the hypersensitivity inhibitors were applied and cured by light exposure. Changes in hypersensitivity were determined by visual analog scale (VAS). The improvement of hypomineralization was evaluated by the change in color tone based on the digital images of intraoral photographs. RESULTS: After repeated monthly treatments, these cases showed decreased hypersensitivity after the fourth application, while the opaque white and brownish color improved on the seventh application. CONCLUSION: This novel hypersensitivity inhibitor with calcium salt of 4-methacryloxyethyl trimellitic acid (C-MET) and 10-methacryloyloxydecyl dihydrogen calcium phosphate (MDCP) not only suppressed hypersensitivity but also improved cloudiness and brown spots in recently erupted permanent teeth in presented cases.

20.
Cell Rep ; 37(6): 109988, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758305

RESUMO

The anti-apoptotic myeloid cell leukemia 1 (MCL1) protein belongs to the pro-survival BCL2 family and is frequently amplified or elevated in human cancers. MCL1 is highly unstable, with its stability being regulated by phosphorylation and ubiquitination. Here, we identify acetylation as another critical post-translational modification regulating MCL1 protein stability. We demonstrate that the lysine acetyltransferase p300 targets MCL1 at K40 for acetylation, which is counteracted by the deacetylase sirtuin 3 (SIRT3). Mechanistically, acetylation enhances MCL1 interaction with USP9X, resulting in deubiquitination and subsequent MCL1 stabilization. Therefore, ectopic expression of acetylation-mimetic MCL1 promotes apoptosis evasion of cancer cells, enhances colony formation potential, and facilitates xenografted tumor progression. We further demonstrate that elevated MCL1 acetylation sensitizes multiple cancer cells to pharmacological inhibition of USP9X. These findings reveal that acetylation of MCL1 is a critical post-translational modification enhancing its oncogenic function and provide a rationale for developing innovative therapeutic strategies for MCL1-dependent tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Neoplasias/patologia , Estabilidade Proteica , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas , Ubiquitina Tiolesterase/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Fatores de Transcrição de p300-CBP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...