Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029967

RESUMO

Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase , Pseudomonas , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Sítios de Ligação , Flavoproteínas/genética , Flavoproteínas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Filogenia , Pseudomonas/enzimologia , Pseudomonas/metabolismo , Xylophilus/enzimologia
3.
Nat Commun ; 14(1): 5803, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726269

RESUMO

The cell walls of pathogenic and acidophilic bacteria, such as Mycobacterium tuberculosis and Mycobacterium leprae, contain lipoarabinomannan and arabinogalactan. These components are composed of D-arabinose, the enantiomer of the typical L-arabinose found in plants. The unique glycan structures of mycobacteria contribute to their ability to evade mammalian immune responses. In this study, we identified four enzymes (two GH183 endo-D-arabinanases, GH172 exo-α-D-arabinofuranosidase, and GH116 exo-ß-D-arabinofuranosidase) from Microbacterium arabinogalactanolyticum. These enzymes completely degraded the complex D-arabinan core structure of lipoarabinomannan and arabinogalactan in a concerted manner. Furthermore, through biochemical characterization using synthetic substrates and X-ray crystallography, we elucidated the mechanisms of substrate recognition and anomer-retaining hydrolysis for the α- and ß-D-arabinofuranosidic bonds in both endo- and exo-mode reactions. The discovery of these D-arabinan-degrading enzymes, along with the understanding of their structural basis for substrate specificity, provides valuable resources for investigating the intricate glycan architecture of mycobacterial cell wall polysaccharides and their contribution to pathogenicity.


Assuntos
Endometriose , Mycobacterium tuberculosis , Animais , Feminino , Humanos , Galactanos , Lipopolissacarídeos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...