Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 10: 211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914950

RESUMO

Studies on the abuse potential of modafinil, a psychostimulant-like drug used to treat narcolepsy, are still controversial. While some studies claim no potential for abuse, increasing evidence suggests that modafinil induces abuse-related effects, including rapid-onset behavioral sensitization (i.e., a type of sensitization that develops within hours from the drug priming administration). The rapid-onset sensitization paradigm is a valuable tool to study the neuroplastic changes that occur quickly after drug administration, and shares neuroadaptations with drug abuse in humans. However, the mechanisms involved in the rapid-onset behavioral sensitization induced by modafinil are uncertain. Our aim was to investigate the possible involvement of dopamine D1 and D2 receptors on acute modafinil-induced hyperlocomotion and on the induction and expression of rapid-onset behavioral sensitization induced by modafinil in male Swiss mice. Treatment with the D1 receptor antagonist SCH 23390 or the D2 receptor antagonist sulpiride attenuated the acute modafinil-induced hyperlocomotion in a dose-dependent manner. Pretreatment with either antagonist before the priming injection of modafinil prevented the development of sensitization in response to a modafinil challenge 4 h later. However, only SCH 23390 decreased the expression of modafinil-induced rapid-onset behavioral sensitization. Taken together, the present findings provide evidence of the participation of D1 and D2 receptors on the development of rapid-onset behavioral sensitization to modafinil, and point to a prominent role of D1 receptors on the expression of this phenomenon.

2.
Oncotarget ; 9(3): 3321-3337, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423049

RESUMO

Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...