Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(20): 12476-12487, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576067

RESUMO

Ice surfaces are characterized by pre-melted quasi-liquid layers (QLLs), which mediate both crystal growth processes and interactions with external agents. Understanding QLLs at the molecular level is necessary to unravel the mechanisms of ice crystal formation. Computational studies of the QLLs heavily rely on the accuracy of the methods employed for identifying the local molecular environment and arrangements, discriminating between solid-like and liquid-like water molecules. Here we compare the results obtained using different order parameters to characterize the QLLs on hexagonal ice (Ih) and cubic ice (Ic) model surfaces investigated with molecular dynamics (MD) simulations in a range of temperatures. For the classification task, in addition to the traditional Steinhardt order parameters in different flavours, we select an entropy fingerprint and a deep learning neural network approach (DeepIce), which are conceptually different methodologies. We find that all the analysis methods give qualitatively similar trends for the behaviours of the QLLs on ice surfaces with temperature, with some subtle differences in the classification sensitivity limited to the solid-liquid interface. The thickness of QLLs on the ice surface increases gradually as the temperature increases. The trends of the QLL size and of the values of the order parameters as a function of temperature for the different facets may be linked to surface growth rates which, in turn, affect crystal morphologies at lower vapour pressure. The choice of the order parameter can be therefore informed by computational convenience except in cases where a very accurate determination of the liquid-solid interface is important.

2.
Commun Chem ; 3(1): 22, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36703415

RESUMO

Ferrihydrite is one of the most important iron-containing minerals on Earth. Yet determination of its atomic-scale structure has been frustrated by its intrinsically poor crystallinity. The key difficulty is that physically-different models can appear consistent with the same experimental data. Using X-ray total scattering and a nancomposite reverse Monte Carlo approach, we evaluate the two principal contending models-one a multi-phase system without tetrahedral iron(III), and the other a single phase with tetrahedral iron(III). Our methodology is unique in considering explicitly the complex nanocomposite structure the material adopts: namely, crystalline domains embedded in a poorly-ordered matrix. The multi-phase model requires unphysical structural rearrangements to fit the data, whereas the single-phase model accounts for the data straightforwardly. Hence the latter provides the more accurate description of the short- and intermediate-range order of ferrihydrite. We discuss how this approach might allow experiment-driven (in)validation of complex models for important nanostructured phases beyond ferrihydrite.

3.
J Chem Inf Model ; 59(5): 2141-2149, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30875217

RESUMO

Computer simulation studies of multiphase systems rely on the accurate identification of local molecular structures and arrangements in order to extract useful insights. Local order parameters, such as Steinhardt parameters, are widely used for this identification task; however, the parameters are often tailored to specific local structural geometries and generalize poorly to new structures and distorted or undercoordinated bonding environments. Motivated by the desire to simplify the process and improve the accuracy, we introduce DeepIce, a novel deep neural network designed to identify ice and water molecules, which can be generalized to new structures where multiple bonding environments are present. DeepIce demonstrates that the characteristics of a crystalline or liquid molecule can be classified using as input simply the Cartesian coordinates of the nearest neighbors without compromising the accuracy. The network is flexible and capable of inferring rotational invariance and produces a high predictive accuracy compared to the Steinhardt approach, the tetrahedral order parameter and polyhedral template matching in the detection of the phase of molecules in premelted ice surfaces.


Assuntos
Aprendizado Profundo , Gelo , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...