Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2634: 191-212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074580

RESUMO

Cellular signalling is a vital process in living organisms for coordinating highly diverse responses to various stimuli. Particle-based modelling excels in its ability to model complex features of cellular signalling pathways including stochasticity, spatial effects, and heterogeneity, thus improving our understanding of critical decision processes in biology. Yet, particle-based modelling is computationally prohibitive to implement. We recently developed FaST (FLAME-accelerated signalling tool), a software tool that harnesses the power of high-performance computation to reduce the computational burden of particle-based modelling. In particular, employing the unique massively parallel architecture of graphic processing units (GPUs) provided extreme speed ups of simulations by >650-fold. In this chapter, we provide a step-by-step walkthrough of how to use FaST to create GPU-accelerated simulations of a simple cellular signalling network. We further explore how the flexibility of FaST can be used to implement entirely customized simulations while still including the intrinsic speed up advantages of GPU-based parallelization.


Assuntos
Algoritmos , Fenômenos Biológicos , Gráficos por Computador , Software , Transdução de Sinais
2.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946664

RESUMO

Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood-brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS). We therefore investigated if antibody-based fusion proteins that combine hexavalent TRAIL and angiopep-2 (ANG2) moieties can be developed, with ANG2 promoting receptor-mediated transcytosis (RMT) across the BBB. We demonstrate that these fusion proteins retain the potent apoptosis induction of hexavalent TRAIL-receptor agonists. Importantly, blood-brain barrier cells instead remained highly resistant to this fusion protein. Binding studies indicated that ANG2 is active in these constructs but that TRAIL-ANG2 fusion proteins bind preferentially to BBB endothelial cells via the TRAIL moiety. Consequently, transport studies indicated that TRAIL-ANG2 fusion proteins can, in principle, be shuttled across BBB endothelial cells, but that low TRAIL receptor expression on BBB endothelial cells interferes with efficient transport. Our work therefore demonstrates that TRAIL-ANG2 fusion proteins remain highly potent in inducing apoptosis, but that therapeutic avenues will require combinatorial strategies, such as TRAIL-R masking, to achieve effective CNS transport.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas , Endotélio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Proteínas de Neoplasias , Peptídeos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese
3.
Cell Death Dis ; 12(7): 647, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168123

RESUMO

Due to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood-brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures. In contrast, single-drug treatments largely failed to induce noticeable amounts of cell death. Kinetic analyses suggested that time-shifted drug exposure might further increase responsiveness, with marizomib pre-treatments indeed strongly enhancing cell death. Cell death responses upon the addition of IZI1551 could also be observed in GBM cells that were kept in a medium collected from the basolateral side of a human hCMEC/D3 BBB model that had been exposed to marizomib. Interestingly, the subset of GBM cell lines resistant to IZI1551+marizomib treatments expressed lower surface amounts of TRAIL death receptors, substantially lower amounts of procaspase-8, and increased amounts of cFLIP, suggesting that apoptosis initiation was likely too weak to initiate downstream apoptosis execution. Indeed, experiments in which the mitochondrial apoptosis threshold was lowered by antagonizing Mcl-1 re-established sensitivity to IZI1551+marizomib in otherwise resistant cells. Overall, our study demonstrates a high efficacy of combination treatments with a latest-generation TRAIL receptor agonist and the BBB permeant proteasome inhibitor marizomib in relevant GBM cell models, as well as strategies to further enhance responsiveness and to sensitize subgroups of otherwise resistant GBM cases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Lactonas/farmacologia , Inibidores de Proteassoma/farmacologia , Pirróis/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioma/metabolismo , Glioma/patologia , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pirimidinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Esferoides Celulares , Tiofenos/farmacologia , Fatores de Tempo
4.
Sci Adv ; 6(48)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33246953

RESUMO

The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.

5.
Cell Death Differ ; 27(11): 3037-3052, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32433558

RESUMO

The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Esferoides Celulares/patologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Celecoxib/farmacologia , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
6.
Cell Death Differ ; 27(10): 2828-2842, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32341447

RESUMO

The execution phase of apoptosis is a critical process in programmed cell death in response to a multitude of cellular stresses. A crucial component of this pathway is the apoptosome, a platform for the activation of pro-caspase 9 (PC9). Recent findings have shown that autocleavage of PC9 to Caspase 9 (C9) p35/p12 not only permits XIAP-mediated C9 inhibition but also temporally shuts down apoptosome activity, forming a molecular timer. In order to delineate the combined contributions of XIAP and the apoptosome molecular timer to apoptosis execution we utilised a systems modelling approach. We demonstrate that cooperative recruitment of PC9 to the apoptosome, based on existing PC9-apoptosome interaction data, is important for efficient formation of PC9 homodimers, autocatalytic cleavage and dual regulation by XIAP and the molecular timer across biologically relevant PC9 and APAF1 concentrations. Screening physiologically relevant concentration ranges of apoptotic proteins, we discovered that the molecular timer can prevent apoptosis execution in specific scenarios after complete or partial mitochondrial outer membrane permeabilisation (MOMP). Furthermore, its ability to prevent apoptosis is intricately tied to a synergistic combination with XIAP. Finally, we demonstrate that simulations of these processes are prognostic of survival in stage III colorectal cancer and that the molecular timer may promote apoptosis resistance in a subset of patients. Based on our findings, we postulate that the physiological function of the molecular timer is to aid XIAP in the shutdown of caspase-mediated apoptosis execution. This shutdown potentially facilitates switching to pro-inflammatory caspase-independent responses subsequent to Bax/Bak pore formation.


Assuntos
Apoptose , Caspase 9/fisiologia , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Humanos
7.
NPJ Syst Biol Appl ; 6(1): 10, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313030

RESUMO

Agent-based modelling is particularly adept at modelling complex features of cell signalling pathways, where heterogeneity, stochastic and spatial effects are important, thus increasing our understanding of decision processes in biology in such scenarios. However, agent-based modelling often is computationally prohibitive to implement. Parallel computing, either on central processing units (CPUs) or graphical processing units (GPUs), can provide a means to improve computational feasibility of agent-based applications but generally requires specialist coding knowledge and extensive optimisation. In this paper, we address these challenges through the development and implementation of the FLAME-accelerated signalling tool (FaST), a software that permits easy creation and parallelisation of agent-based models of cell signalling, on CPUs or GPUs. FaST incorporates validated new agent-based methods, for accurate modelling of reaction kinetics and, as proof of concept, successfully converted an ordinary differential equation (ODE) model of apoptosis execution into an agent-based model. We finally parallelised this model through FaST on CPUs and GPUs resulting in an increase in performance of 5.8× (16 CPUs) and 53.9×, respectively. The FaST takes advantage of the communicating X-machine approach used by FLAME and FLAME GPU to allow easy alteration or addition of functionality to parallel applications, but still includes inherent parallelisation optimisation. The FaST, therefore, represents a new and innovative tool to easily create and parallelise bespoke, robust, agent-based models of cell signalling.


Assuntos
Biologia Computacional/métodos , Transdução de Sinais/fisiologia , Análise de Sistemas , Algoritmos , Fenômenos Bioquímicos , Fenômenos Biológicos , Gráficos por Computador , Simulação por Computador , Modelos Biológicos , Software
8.
Sci Adv ; 3(8): e1700362, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28782037

RESUMO

In recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients. We report a fully synthetic, organic, nanoscopic system that exhibits attractive chemotaxis driven by enzymatic conversion of glucose. We achieve this by encapsulating glucose oxidase alone or in combination with catalase into nanoscopic and biocompatible asymmetric polymer vesicles (known as polymersomes). We show that these vesicles self-propel in response to an external gradient of glucose by inducing a slip velocity on their surface, which makes them move in an extremely sensitive way toward higher-concentration regions. We finally demonstrate that the chemotactic behavior of these nanoswimmers, in combination with LRP-1 (low-density lipoprotein receptor-related protein 1) targeting, enables a fourfold increase in penetration to the brain compared to nonchemotactic systems.


Assuntos
Barreira Hematoencefálica/metabolismo , Quimiotaxia , Polímeros/química , Polímeros/metabolismo , Algoritmos , Transporte Biológico , Difusão , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Modelos Teóricos , Nanoestruturas/química , Nanotecnologia , Polímeros/síntese química
9.
Sci Rep ; 5: 10649, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26058969

RESUMO

Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.


Assuntos
Circulação Sanguínea , Nanopartículas , Transporte Biológico , Eritrócitos/metabolismo , Humanos
10.
Biochem J ; 432(3): 417-27, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20929442

RESUMO

Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Proteínas Ferro-Enxofre , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/química , Fatores de Transcrição , Aminoácidos/análise , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Pegada de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mutantes , Mycobacterium tuberculosis/genética , Regiões Promotoras Genéticas , Estabilidade Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrofotometria , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...