Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3162, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326369

RESUMO

The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.


Assuntos
Vermis Cerebelar , Cerebelo , Animais , Ratos , Cerebelo/fisiologia , Postura/fisiologia , Equilíbrio Postural
2.
Front Bioeng Biotechnol ; 11: 1130219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533695

RESUMO

Previous studies have demonstrated that the central nervous system activates muscles in module patterns to reduce the complexity needed to control each muscle while producing a movement, which is referred to as muscle synergy. In previous musculoskeletal modeling-based muscle synergy analysis studies, as a result of simplification of the joints, a conventional rigid-body link musculoskeletal model failed to represent the physiological interactions of muscle activation and joint kinematics. However, the interaction between the muscle level and joint level that exists in vivo is an important relationship that influences the biomechanics and neurophysiology of the musculoskeletal system. In the present, a lower limb musculoskeletal model coupling a detailed representation of a joint including complex contact behavior and material representations was used for muscle synergy analysis using a decomposition method of non-negative matrix factorization (NMF). The complexity of the representation of a joint in a musculoskeletal system allows for the investigation of the physiological interactions in vivo on the musculoskeletal system, thereby facilitating the decomposition of the muscle synergy. Results indicated that, the activities of the 20 muscles on the lower limb during the stance phase of gait could be controlled by three muscle synergies, and total variance accounted for by synergies was 86.42%. The characterization of muscle synergy and musculoskeletal biomechanics is consistent with the results, thus explaining the formational mechanism of lower limb motions during gait through the reduction of the dimensions of control issues by muscle synergy and the central nervous system.

3.
Brain Commun ; 4(4): fcac200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35974798

RESUMO

The Fugl-Meyer Assessment is widely used to test motor function in stroke survivors. In the Fugl-Meyer Assessment, stroke survivors perform several movement tasks and clinicians subjectively rate the performance of each task item. The individual task items in the Fugl-Meyer Assessment are selected on the basis of clinical experience, and their physiological relevance has not yet been evaluated. In the present study, we aimed to objectively rate the performance of task items by measuring the muscle activity of 41 muscles from the upper body while stroke survivors and healthy participants performed 37 Fugl-Meyer Assessment upper extremity task items. We used muscle synergy analysis to compare muscle activity between subjects and found that 13 muscle synergies in the healthy participants (which we defined as standard synergies) were able to reconstruct all of the muscle activity in the Fugl-Meyer Assessment. Among the standard synergies, synergies involving the upper arms, forearms and fingers were activated to varying degrees during different task items. In contrast, synergies involving posterior trunk muscles were activated during all tasks, which suggests the importance of posterior trunk muscle synergies throughout all sequences. Furthermore, we noted the inactivation of posterior trunk muscle synergies in stroke survivors with severe but not mild impairments, suggesting that lower trunk stability and the underlying activity of posterior trunk muscle synergies may have a strong influence on stroke severity and recovery. By comparing the synergies of stroke survivors with standard synergies, we also revealed that some synergies in stroke survivors corresponded to merged standard synergies; the merging rate increased with the impairment of stroke survivors. Moreover, the degrees of severity-dependent changes in the merging rate (the merging rate-severity relationship) were different among different task items. This relationship was significant for 26 task items only and not for the other 11 task items. Because muscle synergy analysis evaluates coordinated muscle activities, this different dependency suggests that these 26 task items are appropriate for evaluating muscle coordination and the extent of its impairment in stroke survivors. Overall, we conclude that the Fugl-Meyer Assessment reflects physiological function and muscle coordination impairment and suggest that it could be performed using a subset of the 37 task items.

4.
Front Syst Neurosci ; 15: 785366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899202

RESUMO

Humans and animals learn the internal model of bodies and environments from their experience and stabilize posture against disturbances based on the predicted future states according to the internal model. We evaluated the mechanism of predictive control during standing, by using rats to construct a novel experimental system and comparing their behaviors with a mathematical model. In the experiments, rats (n = 6) that were standing upright using their hindlimbs were given a sensory input of light, after a certain period, the floor under them tilted backward. Initially, this disturbance induced a large postural response, including backward rotation of the center-of-mass angle and hindlimb segments. However, the rats gradually adjusted to the disturbance after experiencing 70 sequential trials, and a reduction in the amplitude of postural response was noted. We simulated the postural control of the rats under disturbance using an inverted pendulum model and model predictive control (MPC). MPC is a control method for predicting the future state using an internal model of the control target. It provides control inputs that optimize the predicted future states. Identification of the predictive and physiological parameters so that the simulation corresponds to the experiment, resulted in a value of predictive horizon (0.96 s) close to the interval time in the experiment (0.9-1.15 s). These results suggest that the rats predict posture dynamics under disturbance based on the timing of the sensory input and that the central nervous system provides plasticity mechanisms to acquire the internal model for MPC.

5.
Sci Rep ; 11(1): 20362, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645901

RESUMO

Impairment of inferior olivary neurons (IONs) affects whole-body movements and results in abnormal gait and posture. Because IONs are activated by unpredicted motion rather than regular body movements, the postural dysfunction caused by ION lesions is expected to involve factors other than simple loss of feedback control. In this study, we measured the postural movements of rats with pharmacological ION lesions (IO rats) trained to stand on their hindlimbs. The coordination of body segments as well as the distribution and frequency characteristics of center of mass (COM) motion were analyzed. We determined that the lesion altered the peak properties of the power spectrum density of the COM, whereas changes in coordination and COM distribution were minor. To investigate how the observed properties reflected changes in the control system, we constructed a mathematical model of the standing rats and quantitatively identified the control system. We found an increase in linear proportional control and a decrease in differential and nonlinear control in IO rats compared with intact rats. The dystonia-like changes in body stiffness explain the nature of the linear proportional and differential control, and a disorder in the internal model is one possible cause of the decrease in nonlinear control.


Assuntos
Movimento , Núcleo Olivar/fisiopatologia , Equilíbrio Postural , Animais , Masculino , Núcleo Olivar/patologia , Ratos , Ratos Wistar
6.
Front Neurosci ; 14: 17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116492

RESUMO

Humans walk adaptively in varying environments by manipulating their complicated and redundant musculoskeletal system. Although the central pattern generators in the spinal cord are largely responsible for adaptive walking through sensory-motor coordination, it remains unclear what neural mechanisms determine walking adaptability. It has been reported that locomotor rhythm and phase are regulated by the production of phase shift and rhythm resetting (phase resetting) for periodic motor commands in response to sensory feedback and perturbation. While the phase resetting has been suggested to make a large contribution to adaptive walking, it has only been investigated based on fictive locomotion in decerebrate cats, and thus it remains unclear if human motor control has such a rhythm regulation mechanism during walking. In our previous work, we incorporated a phase resetting mechanism into a motor control model and demonstrated that it improves the stability and robustness of walking through forward dynamic simulations of a human musculoskeletal model. However, this did not necessarily verify that phase resetting plays a role in human motor control. In our other previous work, we used kinematic measurements of human walking to identify the phase response curve (PRC), which explains phase-dependent responses of a limit cycle oscillator to a perturbation. This revealed how human walking rhythm is regulated by perturbations. In this study, we integrated these two approaches using a physical model and identification of the PRC to examine the hypothesis that phase resetting plays a role in the control of walking rhythm in humans. More specifically, we calculated the PRC using our neuromusculoskeletal model in the same way as our previous human experiment. In particular, we compared the PRCs calculated from two different models with and without phase resetting while referring to the PRC for humans. As a result, although the PRC for the model without phase resetting did not show any characteristic shape, the PRC for the model with phase resetting showed a characteristic phase-dependent shape with trends similar to those of the PRC for humans. These results support our hypothesis and will improve our understanding of adaptive rhythm control in human walking.

7.
Front Comput Neurosci ; 13: 63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616271

RESUMO

Humans walk, run, and change their speed in accordance with circumstances. These gaits are rhythmic motions generated by multi-articulated movements, which have specific spatiotemporal patterns. The kinematic characteristics depend on the gait and speed. In this study, we focused on the kinematic coordination of locomotor behavior to clarify the underlying mechanism for the effect of speed on the spatiotemporal kinematic patterns for each gait. In particular, we used seven elevation angles for the whole-body motion and separated the measured data into different phases depending on the foot-contact condition, that is, single-stance phase, double-stance phase, and flight phase, which have different physical constraints during locomotion. We extracted the spatiotemporal kinematic coordination patterns with singular value decomposition and investigated the effect of speed on the coordination patterns. Our results showed that most of the whole-body motion could be explained by only two sets of temporal and spatial coordination patterns in each phase. Furthermore, the temporal coordination patterns were invariant for different speeds, while the spatial coordination patterns varied. These findings will improve our understanding of human adaptation mechanisms to tune locomotor behavior for changing speed.

8.
Sci Rep ; 9(1): 369, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674970

RESUMO

Humans walk and run, as well as change their gait speed, through the control of their complicated and redundant musculoskeletal system. These gaits exhibit different locomotor behaviors, such as a double-stance phase in walking and flight phase in running. The complex and redundant nature of the musculoskeletal system and the wide variation in locomotion characteristics lead us to imagine that the motor control strategies for these gaits, which remain unclear, are extremely complex and differ from one another. It has been previously proposed that muscle activations may be generated by linearly combining a small set of basic pulses produced by central pattern generators (muscle synergy hypothesis). This control scheme is simple and thought to be shared between walking and running at different speeds. Demonstrating that this control scheme can generate walking and running and change the speed is critical, as bipedal locomotion is dynamically challenging. Here, we provide such a demonstration by using a motor control model with 69 parameters developed based on the muscle synergy hypothesis. Specifically, we show that it produces both walking and running of a human musculoskeletal model by changing only seven key motor control parameters. Furthermore, we show that the model can walk and run at different speeds by changing only the same seven parameters based on the desired speed. These findings will improve our understanding of human motor control in locomotion and provide guiding principles for the control design of wearable exoskeletons and prostheses.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Fenômenos Fisiológicos do Sistema Nervoso , Corrida/psicologia , Caminhada/psicologia , Algoritmos , Fenômenos Biomecânicos , Marcha , Humanos , Locomoção , Atividade Motora
9.
Front Neurosci ; 13: 1337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009870

RESUMO

Changing gait is crucial for adaptive and smooth animal locomotion. Although it remains unclear what makes animals decide on a specific gait, energy efficiency is an important factor. It has been reported that the relationship of oxygen consumption with speed is U-shaped for each horse gait and that different gaits have different speeds at which oxygen consumption is minimized. This allows the horse to produce energy-efficient locomotion in a wide speed range by changing gait. However, the underlying mechanisms causing oxygen consumption to be U-shaped and the speeds for the minimum consumption to be different between different gaits are unclear. In the present study, we used a neuromusculoskeletal model of the rat to examine the mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal part of the model based on empirical anatomical data on rats and the motor control model based on the physiological concepts of the spinal central pattern generator and muscle synergy. We also incorporated the posture and speed regulation models at the levels of the brainstem and cerebellum. Our model achieved walking through forward dynamic simulation, and the simulated joint kinematics and muscle activities were compared with animal data. Our model also achieved trotting by changing only the phase difference of the muscle-synergy-based motor commands between the forelimb and hindlimb. Furthermore, the speed of each gait varied by changing only the extension phase duration and amplitude of the muscle synergy-based motor commands and the reference values for the regulation models. The relationship between cost of transport (CoT) and speed was U-shaped for both the generated walking and trotting, and the speeds for the minimum CoT were different for the two gaits, as observed in the oxygen consumption of horses. We found that the resonance property and the posture and speed regulations contributed to the CoT shape and difference in speeds for the minimum CoT. We further discussed the energy efficiency of gait based on the simulation results.

10.
Sci Rep ; 8(1): 17341, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478405

RESUMO

To investigate the adaptive locomotion mechanism in animals, a split-belt treadmill has been used, which has two parallel belts to produce left-right symmetric and asymmetric environments for walking. Spinal cats walking on the treadmill have suggested the contribution of the spinal cord and associated peripheral nervous system to the adaptive locomotion. Physiological studies have shown that phase resetting of locomotor commands involving a phase shift occurs depending on the types of sensory nerves and stimulation timing, and that muscle activation patterns during walking are represented by a linear combination of a few numbers of basic temporal patterns despite the complexity of the activation patterns. Our working hypothesis was that resetting the onset timings of basic temporal patterns based on the sensory information from the leg, especially extension of hip flexors, contributes to adaptive locomotion on the split-belt treadmill. Our hypothesis was examined by conducting forward dynamic simulations using a neuromusculoskeletal model of a rat walking on a split-belt treadmill with its hindlimbs and by comparing the simulated motions with the measured motions of rats.


Assuntos
Membro Posterior/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço/métodos , Articulações/fisiologia , Masculino , Modelos Biológicos , Postura/fisiologia , Ratos Wistar , Medula Espinal/fisiologia
11.
PLoS One ; 12(12): e0189248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244818

RESUMO

The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more accessible neural structures. The experimental design requires rats to stand bipedally in order to obtain a water reward placed in a water supplier above them. Their motions can be measured in detail using a motion capture system and a force plate. Rats have the ability to stand bipedally for long durations (over 200 s), allowing for the construction of an experimental environment in which the steady standing motion of rats could be measured. The characteristics of the measured motion were evaluated based on aspects of the rats' intersegmental coordination and power spectrum density (PSD). These characteristics were compared with those of the human bipedal posture. The intersegmental coordination of the standing rats included two components that were similar to that of standing humans: center of mass and trunk motion. The rats' PSD showed a peak at approximately 1.8 Hz and the pattern of the PSD under the peak frequency was similar to that of the human PSD. However, the frequencies were five times higher in rats than in humans. Based on the analysis of the rats' bipedal standing motion, there were some common characteristics between rat and human standing motions. Thus, using standing rats is expected to be a powerful tool to reveal the neural basis of postural control.


Assuntos
Equilíbrio Postural/fisiologia , Animais , Fenômenos Biomecânicos , Humanos , Movimento/fisiologia , Postura , Ratos Wistar
12.
Sci Rep ; 6: 30199, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27444746

RESUMO

Multilegged locomotion improves the mobility of terrestrial animals and artifacts. Using many legs has advantages, such as the ability to avoid falling and to tolerate leg malfunction. However, many intrinsic degrees of freedom make the motion planning and control difficult, and many contact legs can impede the maneuverability during locomotion. The underlying mechanism for generating agile locomotion using many legs remains unclear from biological and engineering viewpoints. The present study used a centipede-like multilegged robot composed of six body segments and twelve legs. The body segments are passively connected through yaw joints with torsional springs. The dynamic stability of the robot walking in a straight line changes through a supercritical Hopf bifurcation due to the body axis flexibility. We focused on a quick turning task of the robot and quantitatively investigated the relationship between stability and maneuverability in multilegged locomotion by using a simple control strategy. Our experimental results show that the straight walk instability does help the turning maneuver. We discuss the importance and relevance of our findings for biological systems and propose a design principle for a simple control scheme to create maneuverable locomotion of multilegged robots.

13.
PLoS Comput Biol ; 12(5): e1004950, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27203839

RESUMO

Humans and animals control their walking rhythms to maintain motion in a variable environment. The neural mechanism for controlling rhythm has been investigated in many studies using mechanical and electrical stimulation. However, quantitative evaluation of rhythm variation in response to perturbation at various timings has rarely been investigated. Such a characteristic of rhythm is described by the phase response curve (PRC). Dynamical simulations of human skeletal models with changing walking rhythms (phase reset) described a relation between the effective phase reset on stability and PRC, and phase reset around touch-down was shown to improve stability. A PRC of human walking was estimated by pulling the swing leg, but such perturbations hardly influenced the stance leg, so the relation between the PRC and walking events was difficult to discuss. This research thus examines human response to variations in floor velocity. Such perturbation yields another problem, in that the swing leg is indirectly (and weakly) perturbed, so the precision of PRC decreases. To solve this problem, this research adopts the weighted spike-triggered average (WSTA) method. In the WSTA method, a sequential pulsed perturbation is used for stimulation. This is in contrast with the conventional impulse method, which applies an intermittent impulsive perturbation. The WSTA method can be used to analyze responses to a large number of perturbations for each sequence. In the experiment, perturbations are applied to walking subjects by rapidly accelerating and decelerating a treadmill belt, and measured data are analyzed by the WSTA and impulse methods. The PRC obtained by the WSTA method had clear and stable waveforms with a higher temporal resolution than those obtained by the impulse method. By investigation of the rhythm transition for each phase of walking using the obtained PRC, a rhythm change that extends the touch-down and mid-single support phases is found to occur.


Assuntos
Modelos Biológicos , Caminhada/fisiologia , Aceleração , Fenômenos Biomecânicos , Biologia Computacional , Marcha/fisiologia , Humanos , Perna (Membro) , Masculino , Músculo Esquelético/fisiologia , Periodicidade , Adulto Jovem
14.
R Soc Open Sci ; 3(1): 150570, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26909186

RESUMO

Human quiet standing is accompanied by body sway. The amplitude of this body sway is known to be larger than would be predicted from simple noise effects, and sway characteristics are changed by neurological disorders. This large sway is thought to arise from nonlinear control with prolonged periods of no control (intermittent control), and a nonlinear control system of this kind has been predicted to exhibit bifurcation. The presence of stability-dependent transition enables dynamic reaction that depends on the stability of the environment, and can explain the change in sway characteristics that accompanies some neurological disorders. This research analyses the characteristics of a system model that induces transition, and discusses whether human standing reflects such a mechanism. In mathematical analysis of system models, (intermittent control-like) nonlinear control with integral control is shown to exhibit Hopf bifurcation. Moreover, from the analytical solution of the system model with noise, noise is shown to work to smooth the enlargement of sway around the bifurcation point. This solution is compared with measured human standing sway on floors with different stabilities. By quantitatively comparing the control parameters between human observation and model prediction, enlargement of sway is shown to appear as predicted by the model analysis.

15.
Neurosci Res ; 104: 105-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26562335

RESUMO

Although pain is unpleasant, it should serve as a reminder for individuals to avoid similar damaging incidents in the future. Hereditary sensory and autonomic neuropathy (HSAN) includes genetic disorders involving various sensory and autonomic dysfunctions. They are classified by the mode of inheritance, clinical features, and related genes. HSAN type 4 (HSAN-4) and type 5 (HSAN-5) are characterized by insensitivity to pain and thermal sensation. Further, HSAN-4 is accompanied by decreased sweating and intellectual disabilities. These characteristics of HSAN-4 and -5 result in many clinical features, such as pediatric, psychiatric, orthopedic, oral, dermatological, and ophthalmological problems. Orthopedic problems include destructive injuries such as multiple fractures and joint dislocation. Studies on gait have shown greater speed and higher heel contact angular velocity in HSAN-4 and -5 patients compared with controls. Studies on grasp-lift-holding tasks have shown higher grasp force and fluctuations in acceleration of the object. We believe that these findings represent outcomes of deficient motor learning. We propose a new rehabilitation method for patients with HSAN-4 and -5, with the aim of decreasing their destructive injuries.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/reabilitação , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Humanos
16.
Neurosci Res ; 104: 88-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26616311

RESUMO

Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed.


Assuntos
Locomoção/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Desempenho Psicomotor/fisiologia , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Imagem Corporal , Humanos , Modelos Biológicos , Caminhada/fisiologia
17.
J R Soc Interface ; 12(110): 0542, 2015 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26289658

RESUMO

Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint.


Assuntos
Robótica , Caminhada , Humanos
18.
Exp Brain Res ; 233(5): 1421-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25657068

RESUMO

A walking motion is established by feedforward control for rhythmic locomotion and feedback control for adapting to environmental variations. To identify the control variables that underlie feedback control, uncontrolled manifold (UCM) analysis has been proposed and adopted for analyzing various movements. UCM analysis searches the controlled variables by comparing the fluctuation size of segmental groups related and unrelated to the movement of candidate variables, based on the assumption that a small fluctuation size indicates a relationship with the feedback control. The present study was based on UCM analysis and evaluated fluctuation size to determine the control mechanism for walking. While walking, the subjects were subjected to floor disturbances at two different frequencies, and the fluctuation sizes of the segmental groups related to characteristic variables were calculated and compared. The characteristic variables evaluated were the motion of the center of mass, limb axis, and head, and the intersegmental coordination of segmental groups with simultaneous coupled movements. Results showed that the fluctuations in intersegmental coordination were almost equally small for any segment, while fluctuations in the other variables were large in certain segments. Moreover, a comparison of the fluctuation sizes among the evaluated variables showed that the fluctuation size for intersegmental coordination was the smallest. These results indicate a possible relationship between intersegmental coordination and the control of walking.


Assuntos
Retroalimentação Fisiológica/fisiologia , Movimento , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Humanos , Masculino , Movimento (Física) , Orientação , Reprodutibilidade dos Testes
19.
Artigo em Inglês | MEDLINE | ID: mdl-26737490

RESUMO

Human generates very slow (<1 Hz) body sway during standing, and the behavior of this sway is known to be changed characteristically depending on the neural ataxia. In order to investigate the sway mechanism and mechanism of neural ataxia through this sway behavior, the present research proposes an experimental environment of rats under bipedal standing. By the experiment, we succeeded the measurement of six intact rats standing for over 200 seconds without postural supports. Moreover, by comparing measured center of pressure (COP) and that of system model with nonlinear PID control model which is proposed as human standing model, control parameters of rats were numerically evaluated. Evaluated control parameters of rats were close to those of human, i.e., control strategy was considered to be comparable between rats and human.


Assuntos
Postura/fisiologia , Animais , Humanos , Dinâmica não Linear , Equilíbrio Postural/fisiologia , Pressão , Ratos Wistar
20.
Artigo em Inglês | MEDLINE | ID: mdl-26737844

RESUMO

In this study, we investigated the adaptive behavior during hindlimb locomotion of rats on a split-belt treadmill. We measured and analyzed the movement of intact rats walking by the hindlimbs on the splitbelt treadmill with two conditions: symmetric and asymmetric belt speed. In addition, we conducted the dynamic simulation of a neuromusculoskeletal model of rat's hindlimb walking on a split-belt treadmill. We investigated the immediate modulations of the duty factors and relative phase between the right and left limbs depending on the conditions of the treadmill. The results of the simulation were qualitatively similar to those of the measurement experiment. Furthermore, these results were qualitatively similar to the measurement data of the humans and cats in the previous studies. This suggests that our model have the essential aspects to produce the adaptive split-belt treadmill walking in dynamics viewpoints.


Assuntos
Adaptação Psicológica/fisiologia , Teste de Esforço/métodos , Membro Posterior/fisiologia , Caminhada/fisiologia , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...