Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6440, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081066

RESUMO

Modified solid surfaces exhibit unique wetting behavior, such as hydrophobicity and hydrophilicity. Such behavior can passively control the fluid flow. In this study, we experimentally demonstrated a wettability-designable cell array consisting of unetched and physically etched surfaces by reactive ion etching on a silicon substrate. The etching process induced a significant surface roughness on the silicon surface. Thus, the unetched and etched surfaces have different wettabilities. By adjusting the ratio between the unetched and etched surface areas, we designed one- and two-dimensional wettability gradients for the fluid channel. Consequently, fine-tuned channels passively realized unidirectional and curved fluid motions. The design of a wettability gradient is crucial for practical and portable systems with integrated fluid channels.

2.
Microsyst Nanoeng ; 9: 32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969967

RESUMO

Nanoscale cantilevers (nanocantilevers) made from carbon nanotubes (CNTs) provide tremendous benefits in sensing and electromagnetic applications. This nanoscale structure is generally fabricated using chemical vapor deposition and/or dielectrophoresis, which contain manual, time-consuming processes such as the placing of additional electrodes and careful observation of single-grown CNTs. Here, we demonstrate a simple and Artificial Intelligence (AI)-assisted method for the efficient fabrication of a massive CNT-based nanocantilever. We used randomly positioned single CNTs on the substrate. The trained deep neural network recognizes the CNTs, measures their positions, and determines the edge of the CNT on which an electrode should be clamped to form a nanocantilever. Our experiments demonstrate that the recognition and measurement processes are automatically completed in 2 s, whereas comparable manual processing requires 12 h. Notwithstanding the small measurement error by the trained network (within 200 nm for 90% of the recognized CNTs), more than 34 nanocantilevers were successfully fabricated in one process. Such high accuracy contributes to the development of a massive field emitter using the CNT-based nanocantilever, in which the output current is obtained with a low applied voltage. We further showed the benefit of fabricating massive CNT-nanocantilever-based field emitters for neuromorphic computing. The activation function, which is a key function in a neural network, was physically realized using an individual CNT-based field emitter. The introduced neural network with the CNT-based field emitters recognized handwritten images successfully. We believe that our method can accelerate the research and development of CNT-based nanocantilevers for realizing promising future applications.

3.
Sci Rep ; 12(1): 15029, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056122

RESUMO

Acoustic radiation force plays a key role in microfluidic systems for particle and cell manipulation. In this study, we investigate the acoustic radiation force resulting from synthesized ultrasounds that are emitted from multiple sound sources with slightly different oscillation frequencies. Due to the synthesized field, the acoustic radiation force is expressed as the sum of a dc component and harmonics of fundamental frequencies of a few hertz. This induces the beat of the acoustic radiation force. We demonstrate that the synthesized field provides the periodic on/off switching of the acoustic radiation force associated with the one denominational planar standing wave in a straight microfluidic channel. Consequently, our system can temporally manipulate acoustic radiation force without active controls.


Assuntos
Microfluídica , Som , Acústica
4.
Nanotechnology ; 30(42): 425201, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31323658

RESUMO

This work studies the enhancement factor associated with a current emitted from a multi-wall carbon nanotube to an extremely small counter electrode. The experimental data show that the field enhancement factor increases by 1.15 times when the width of the counter electrode increases from 50 to 200 nm. To better understand this enhancement effect, field intensities at the emitter surface are numerically simulated. The experimental work and simulations demonstrate that the observed field enhancement results from increases in the capacitance between the emitter and counter electrode. In addition, corrugated counter electrodes are found to greatly affect both the capacitance and enhancement factor. This is because the corrugation of the anode surface raises the capacitance and thus provides a higher current. We experimentally show that an effective surface area enlargement of 1.67 times due to the corrugation provides a 1.06-fold increase of the enhancement factor. These results should assist in the future development of field emission devices based on semiconductor fabrication processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...