Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Geriatr Gerontol Int ; 24(1): 161-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062994

RESUMO

AIM: Whether sex differences exist in hereditary progeroid syndromes remains unclear. In this study, we investigated sex differences in patients with Werner syndrome (WS), a model of human aging, using patient data at the time of diagnosis. METHODS: The presence of six cardinal signs in the diagnostic criteria was retrospectively evaluated. RESULTS: We found that the percentage of patients with all cardinal signs was higher in males than in females (54.2% vs. 21.2%). By the age of 40 years, 57.1% of male patients with WS presented with all the cardinal signs, whereas none of the female patients developed all of them. In particular, the frequency of having a high-pitched, hoarse voice, a characteristic of WS, was lower in female patients. The positive and negative predictive values for clinical diagnosis were 100% for males and females, indicating the helpfulness of diagnostic criteria regardless of sex. More female patients than male (86.7% vs. 64%) required genetic testing for their diagnosis because their clinical symptoms were insufficient, suggesting the importance of genetic testing for females even if they do not show typical symptoms of WS. Finally, the frequency of abnormal voice was lower in patients with WS harboring the c.3139-1G > C homozygous mutation. CONCLUSION: These results indicate, for the first time, that there are sex differences in the phenotypes of hereditary progeroid syndromes. The analysis of this mechanism in this human model of aging may lead to the elucidation of sex differences in the various symptoms of normal human aging. Geriatr Gerontol Int 2024; 24: 161-167.


Assuntos
Síndrome de Werner , Humanos , Masculino , Feminino , Síndrome de Werner/diagnóstico , Síndrome de Werner/genética , Estudos Retrospectivos , Caracteres Sexuais , Helicase da Síndrome de Werner/genética , Mutação
2.
Aging (Albany NY) ; 15(19): 9948-9964, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793000

RESUMO

Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, highlighting the therapeutic potential of rapamycin for this disease.


Assuntos
Resistência à Insulina , Insulinas , Lipodistrofia , Síndrome de Werner , Animais , Humanos , Síndrome de Werner/genética , Adipogenia/genética , Caenorhabditis elegans , Senescência Celular/genética , Gordura Subcutânea/metabolismo , Inflamação , Sirolimo , Mamíferos
4.
Biosci Biotechnol Biochem ; 83(12): 2364-2371, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31462168

RESUMO

Green tea intake is generally recognized as an effective supplement that promotes mental clarity and cognitive function. These health benefits of green tea have been attributed mainly to its effective component, epigallocatechin gallate (EGCG). Because various catechin derivatives potently enhance these health benefits, we manipulated the extraction process with a high-temperature intervention. High-temperature-processed green tea extract (HTP-GTE) showed an elevated proportion of gallocatechin gallate (GCG) content. To investigate the preventive effects of HTP-GTE on cognitive decline, we found its neuroprotective effects against amyloid ß (Aß)-induced neurotoxicity in neurons and clarified that GCG significantly inhibited Aß aggregation in vitro. Moreover, we showed that HTP-GTE intake attenuated several cognitive-decline phenotypes in a model mouse of Alzheimer's disease. These beneficial effects of HTP-GTE against cognitive decline were due to the distinctive composition of the extract and suggest the possibility that HTP-GTE supplementation could attenuate cognitive decline of Alzheimer's disease.


Assuntos
Camellia sinensis/química , Transtornos Cognitivos/prevenção & controle , Suplementos Nutricionais , Temperatura Alta , Extratos Vegetais/farmacologia , Presenilina-2/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Catequina/análogos & derivados , Catequina/análise , Camundongos , Camundongos Transgênicos , Células PC12 , Extratos Vegetais/administração & dosagem , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...