Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961340

RESUMO

Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary: Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.

2.
Gastroenterology ; 165(5): 1219-1232, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507075

RESUMO

BACKGROUND & AIMS: BiTE (bispecific T-cell engager) immune therapy has demonstrated clinical activity in multiple tumor indications, but its influence in the tumor microenvironment remains unclear. CLDN18.2 is overexpressed in solid tumors including gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC), both of which are characterized by the presence of immunosuppressive cells, including regulatory T cells (Tregs) and few effector T cells (Teffs). METHODS: We evaluated the activity of AMG 910, a CLDN18.2-targeted half-life extended (HLE) BiTE molecule, in GC and PDAC preclinical models and cocultured Tregs and Teffs in the presence of CLDN18.2-HLE-BiTE. RESULTS: AMG 910 induced potent, specific cytotoxicity in GC and PDAC cell lines. In GSU and SNU-620 GC xenograft models, AMG 910 engaged human CD3+ T cells with tumor cells, resulting in significant antitumor activity. AMG 910 monotherapy, in combination with a programmed death-1 (PD-1) inhibitor, suppressed tumor growth and enhanced survival in an orthotopic Panc4.14 PDAC model. Moreover, Treg infusion enhanced the antitumor efficacy of AMG 910 in the Panc4.14 model. In syngeneic KPC models of PDAC, treatment with a mouse surrogate CLDN18.2-HLE-BiTE (muCLDN18.2-HLE-BiTE) or the combination with an anti-PD-1 antibody significantly inhibited tumor growth. Tregs isolated from mice bearing KPC tumors that were treated with muCLDN18.2-HLE-BiTE showed decreased T cell suppressive activity and enhanced Teff cytotoxic activity, associated with increased production of type I cytokines and expression of Teff gene signatures. CONCLUSIONS: Our data suggest that BiTE molecule treatment converts Treg function from immunosuppressive to immune enhancing, leading to antitumor activity in immunologically "cold" tumors.


Assuntos
Anticorpos Biespecíficos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Linfócitos T Reguladores/metabolismo , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Moléculas de Adesão Celular , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunidade , Microambiente Tumoral , Claudinas
3.
Gastroenterology ; 163(5): 1267-1280.e7, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35718227

RESUMO

BACKGROUND & AIMS: The stroma in pancreatic ductal adenocarcinoma (PDAC) contributes to its immunosuppressive nature and therapeutic resistance. Herein we sought to modify signaling and enhance immunotherapy efficacy by targeting multiple stromal components through both intracellular and extracellular mechanisms. METHODS: A murine liver metastasis syngeneic model of PDAC was treated with focal adhesion kinase inhibitor (FAKi), anti-programmed cell death protein 1 (PD-1) antibody, and stromal hyaluronan (HA) degradation by PEGylated recombinant human hyaluronidase (PEGPH20) to assess immune and stromal modulating effects of these agents and their combinations. RESULTS: The results showed that HA degradation by PEGPH20 and reduction in phosphorylated FAK expression by FAKi leads to improved survival in PDAC-bearing mice treated with anti-PD-1 antibody. HA degradation in combination with FAKi and anti-PD-1 antibody increases T-cell infiltration and alters T-cell phenotype toward effector memory T cells. FAKi alters the expression of T-cell modulating cytokines and leads to changes in T-cell metabolism and increases in effector T-cell signatures. HA degradation in combination with anti-PD-1 antibody and FAKi treatments reduces granulocytes, including granulocytic- myeloid-derived suppressor cells and decreases C-X-C chemokine receptor type 4 (CXCR4)-expressing myeloid cells, particularly the CXCR4-expressing granulocytes. Anti-CXCR4 antibody combined with FAKi and anti-PD-1 antibody significantly decreases metastatic rates in the PDAC liver metastasis model. CONCLUSIONS: This represents the first preclinical study to identify synergistic effects of targeting both intracellular and extracellular components within the PDAC stroma and supports testing anti-CXCR4 antibody in combination with FAKi as a PDAC treatment strategy.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Adenocarcinoma/patologia , Hialuronoglucosaminidase/farmacologia , Hialuronoglucosaminidase/uso terapêutico , Ácido Hialurônico , Carcinoma Ductal Pancreático/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteína-Tirosina Quinases de Adesão Focal , Citocinas/farmacologia , Morte Celular , Polietilenoglicóis/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Cancer Lett ; 539: 215722, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35533951

RESUMO

Pancreatic ductal adenocarcinoma(PDAC) does not respond to single-agent immune checkpoint inhibitor therapy, including anti-PD-1 antibody(aPD-1) therapy. Higher plasma levels of IL-8 are associated with poorer outcomes in patients who receive aPD-1 therapies, providing a rationale for combination immunotherapy with an anti-IL-8 antibody(aIL-8) and aPD-1. We thus investigated whether human aIL-8 therapy can potentiate the antitumor activity of aPD-1 and further investigated how the combination affects the immune response by regulating myeloid cells in the tumor microenvironment in a humanized murine model of PDAC with a reconstituted immune system consisting of human T cells and a combination of CD14+ and CD16+ myeloid cells. The results show that the combination of aIL-8 and aPD-1 treatment significantly enhanced antitumor activity following the infusion of myeloid cells. Our results further showed that the target of IL-8 is mainly present in CD16+ myeloid cells and is likely to be granulocytes. FACS analysis showed that aIL-8 treatment increased granulocytic myeloid cells in tumors. Consistently, single-nuclear RNA-sequencing analysis of tumor tissue showed that the innate immune response and cytokine response pathways in the myeloid cell cluster were activated by aIL-8 treatment. This is the first preclinical study using a humanized mouse model for new combination immunotherapeutic development and supports the further clinical testing of aIL-8 in combination with aPD-1 for PDAC treatment. This study also suggests that peripherally derived myeloid cells can potentiate the antitumor response of T cells, likely through the innate immune response, and aIL-8 re-educates tumor-infiltrating myeloid cells by activating the innate immune response.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-8 , Camundongos , Células Mieloides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
5.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404390

RESUMO

The resistance of pancreatic ductal adenocarcinoma (PDAC) to immune checkpoint inhibitors (ICIs) is attributed to the immune-quiescent and -suppressive tumor microenvironment (TME). We recently found that CCR2 and CCR5 were induced in PDAC following treatment with anti-PD-1 antibody (αPD-1); thus, we examined PDAC vaccine or radiation therapy (RT) as T cell priming mechanisms together with BMS-687681, a dual antagonist of CCR2 and CCR5 (CCR2/5i), in combination with αPD-1 as new treatment strategies. Using PDAC mouse models, we demonstrated that RT followed by αPD-1 and prolonged treatment with CCR2/5i conferred better antitumor efficacy than other combination treatments tested. The combination of RT + αPD-1 + CCR2/5i enhanced intratumoral effector and memory T cell infiltration but suppressed regulatory T cell, M2-like tumor-associated macrophage, and myeloid-derived suppressive cell infiltration. RNA sequencing showed that CCR2/5i partially inhibited RT-induced TLR2/4 and RAGE signaling, leading to decreased expression of immunosuppressive cytokines including CCL2/CCL5, but increased expression of effector T cell chemokines such as CCL17/CCL22. This study thus supports the clinical development of CCR2/5i in combination with RT and ICIs for PDAC treatment.


Assuntos
Adenocarcinoma , Antagonistas dos Receptores CCR5 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores CCR2 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Animais , Antagonistas dos Receptores CCR5/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Receptores CCR2/antagonistas & inibidores , Receptores CCR5 , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...