Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 76: 102398, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866203

RESUMO

In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.


Assuntos
Guanosina Pentafosfato , Nucleotídeos , Guanosina Pentafosfato/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , GMP Cíclico/metabolismo , Transdução de Sinais , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
2.
Nat Chem Biol ; 19(3): 257-258, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470997
3.
mBio ; 13(6): e0242222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472432

RESUMO

Small alarmone hydrolases (SAHs) are alarmone metabolizing enzymes found in both metazoans and bacteria. In metazoans, the SAH homolog Mesh1 is reported to function in cofactor metabolism by hydrolyzing NADPH to NADH. In bacteria, SAHs are often identified in genomes with toxic alarmone synthetases for self-resistance. Here, we characterized a bacterial orphan SAH, i.e., without a toxic alarmone synthetase, in the phytopathogen Xanthomonas campestris pv. campestris (XccSAH) and found that it metabolizes both cellular alarmones and cofactors. In vitro, XccSAH displays abilities to hydrolyze multiple nucleotides, including pppGpp, ppGpp, pGpp, pppApp, and NADPH. In vivo, X. campestris pv. campestris cells lacking sah accumulated higher levels of cellular (pp)pGpp and NADPH compared to wild-type cells upon amino acid starvation. In addition, X. campestris pv. campestris mutants lacking sah were more sensitive to killing by Pseudomonas during interbacterial competition. Interestingly, loss of sah also resulted in reduced growth in amino acid-replete medium, a condition that did not induce (pp)pGpp or pppApp accumulation. Further metabolomic characterization revealed strong depletion of NADH levels in the X. campestris pv. campestris mutant lacking sah, suggesting that NADPH/NADH regulation is an evolutionarily conserved function of both bacterial and metazoan SAHs and Mesh1. Overall, our work demonstrates a regulatory role of bacterial SAHs as tuners of stress responses and metabolism, beyond functioning as antitoxins. IMPORTANCE Small alarmone hydrolases (SAHs) comprise a widespread family of alarmone metabolizing enzymes. In metazoans, SAHs have been reported to control multiple aspects of physiology and stress resistance through alarmone and NADPH metabolisms, but their physiological functions in bacteria is mostly uncharacterized except for a few reports as antitoxins. Here, we identified an SAH functioning independently of toxins in the phytopathogen Xanthomonas campestris pv. campestris. We found that XccSAH hydrolyzed multiple alarmones and NADPH in vitro, and X. campestris pv. campestris mutants lacking sah displayed increased alarmone levels during starvation, loss of interspecies competitive fitness, growth defects, and strong reduction in NADH. Our findings reveal the importance of NADPH hydrolysis by a bacterial SAH. Our work is also the first report of significant physiological roles of bacterial SAHs beyond functioning as antitoxins and suggests that SAHs have far broader physiological roles and share similar functions across domains of life.


Assuntos
Guanosina Pentafosfato , Xanthomonas campestris , Animais , Guanosina Pentafosfato/metabolismo , Hidrolases , Proteínas de Bactérias/metabolismo , NADP , NAD , Bactérias/metabolismo , Aminoácidos
4.
mLife ; 1(2): 101-113, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38817674

RESUMO

Antibiotics combat bacteria through their bacteriostatic (by growth inhibition) or bactericidal (by killing bacteria) action. Mechanistically, it has been proposed that bactericidal antibiotics trigger cellular damage, while bacteriostatic antibiotics suppress cellular metabolism. Here, we demonstrate how the difference between bacteriostatic and bactericidal activities of the antibiotic chloramphenicol can be attributed to an antibiotic-induced bacterial protective response: the stringent response. Chloramphenicol targets the ribosome to inhibit the growth of the Gram-positive bacterium Bacillus subtilis. Intriguingly, we found that chloramphenicol becomes bactericidal in B. subtilis mutants unable to produce (p)ppGpp. We observed a similar (p)ppGpp-dependent bactericidal effect of chloramphenicol in the Gram-positive pathogen Enterococcus faecalis. In B. subtilis, chloramphenicol treatment induces (p)ppGpp accumulation through the action of the (p)ppGpp synthetase RelA. (p)ppGpp subsequently depletes the intracellular concentration of GTP and antagonizes GTP action. This GTP regulation is critical for preventing chloramphenicol from killing B. subtilis, as bypassing (p)ppGpp-dependent GTP regulation potentiates chloramphenicol killing, while reducing GTP synthesis increases survival. Finally, chloramphenicol treatment protects cells from the classical bactericidal antibiotic vancomycin, reminiscent of the clinical phenomenon of antibiotic antagonism. Taken together, our findings suggest a role of (p)ppGpp in the control of the bacteriostatic and bactericidal activity of antibiotics in Gram-positive bacteria, which can be exploited to potentiate the efficacy of existing antibiotics.

5.
Annu Rev Genet ; 55: 115-133, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34416118

RESUMO

Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets' common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches.


Assuntos
Guanosina Pentafosfato , Nucleotídeos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/genética , Guanosina Pentafosfato/metabolismo , Nucleotídeos/metabolismo
6.
Front Microbiol ; 11: 2083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983059

RESUMO

(p)ppGpp is a highly conserved bacterial alarmone which regulates many aspects of cellular physiology and metabolism. In Gram-positive bacteria such as B. subtilis, cellular (p)ppGpp level is determined by the bifunctional (p)ppGpp synthetase/hydrolase RelA and two small alarmone synthetases (SASs) YjbM (SasB) and YwaC (SasA). However, it is less clear whether these enzymes are also involved in regulation of alarmones outside of (p)ppGpp. Here we developed an improved LC-MS-based method to detect a broad spectrum of metabolites and alarmones from bacterial cultures with high efficiency. By characterizing the metabolomic signatures of SasA expressing B. subtilis, we identified strong accumulation of the (p)ppGpp analog pGpp, as well as accumulation of ppApp and AppppA. The induced accumulation of these alarmones is abolished in the catalytically dead sasA mutant, suggesting that it is a consequence of SasA synthetase activity. In addition, we also identified depletion of specific purine nucleotides and their precursors including IMP precursors FGAR, SAICAR and AICAR (ZMP), as well as GTP and GDP. Furthermore, we also revealed depletion of multiple pyrimidine precursors such as orotate and orotidine 5'-phosphate. Taken together, our work shows that induction of a single (p)ppGpp synthetase can cause concomitant accumulation and potential regulatory interplay of multiple alarmones.

7.
Antimicrob Agents Chemother ; 54(3): 1082-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20086164

RESUMO

This study aimed at elucidating the physiological basis of bacterial antibiotic tolerance. By use of a combined phenotypic and gene knockout approach, exogenous nutrient composition was identified as a crucial environmental factor which could mediate progressive development of tolerance with markedly varied drug specificity and sustainability. Deprivation of amino acids was a prerequisite for tolerance formation, conferring condition-specific phenotypes against inhibitors of cell wall synthesis and DNA replication (ampicillin and ofloxacin, respectively), according to the relative abundances of ammonium salts, phosphate, and nucleobases. Upon further depletion of glucose, this variable phase consistently evolved into a sustainable mode, along with enhanced capacity to withstand the effect of the protein synthesis inhibitor gentamicin. Nevertheless, all phenotypes produced during spontaneous nutrient depletion lacked the sustainable, multidrug-tolerant features exhibited by the stationary-phase population and were attributed to complex interaction between starvation-mediated metabolic and stress protection responses on the basis of the following reasons: (i) the nutrition-dependent tolerance characteristics observed suggested that adaptive biosynthetic mechanisms could suppress but not fully avert tolerance under transient starvation conditions; (ii) formation of specific phenotypes could be inhibited by suppressing protein synthesis prior to nutrient depletion; (iii) bacteriostatic drugs produced only weak tolerance in the absence of starvation signals; and (iv) the attenuation of the stringent and SOS responses, as well as the functionality of other putative tolerance determinants, including rpoS, hipA, glpD, and phoU, could alter the induction requirement and drug specificity of the resultant phenotypes. These data reveal the common physiological grounds characteristic of starvation responses and the onset of antibiotic tolerance in bacteria.


Assuntos
Antibacterianos/farmacologia , Tolerância a Medicamentos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/fisiologia , Resposta ao Choque Térmico , Meios de Cultura/química , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana
8.
Antimicrob Agents Chemother ; 51(7): 2508-13, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17371822

RESUMO

We report on the first occurrence of high-level gentamicin resistance (MICs > or = 512 microg/ml) in seven clinical isolates of Streptococcus pasteurianus from Hong Kong. These seven isolates were confirmed to be the species S. pasteurianus on the basis of nucleotide sequencing of the superoxide dismutase (sodA) gene. Epidemiological data as well as the results of pulse-field gel electrophoresis analysis suggested that the seven S. pasteurianus isolates did not belong to the same clone. Molecular characterization showed that they carried a chromosomal, transposon-borne resistance gene [aac(6')Ie-aph(2'')Ia] which was known to encode a bifunctional aminoglycoside-modifying enzyme. The genetic arrangement of this transposon was similar to that of Tn4001, a transposon previously recovered from Staphylococcus aureus and other gram-positive isolates. Genetic linkage with other resistance elements, such as the ermB gene for erythromycin resistance, was not evident. On the basis of these findings, we suggest that routine screening for high-level gentamicin resistance should be recommended for all clinically significant blood culture isolates. This is to avoid the inadvertent use of short-course combination therapy with penicillin and gentamicin, which may lead to the failure of treatment for endocarditis, the selection of drug-resistant Streptococcus pasteurianus and other gram-positive organisms, as well as the unnecessary usage of gentamicin, a drug with potential toxicity.


Assuntos
Antibacterianos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Gentamicinas/farmacologia , Streptococcus/efeitos dos fármacos , Sequência de Bases , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Streptococcus/genética , Streptococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA