Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Radiol Artif Intell ; 4(2): e210196, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35391773

RESUMO

The purpose of this work was to assess the performance of a convolutional neural network (CNN) for automatic thoracic aortic measurements in a heterogeneous population. From June 2018 to May 2019, this study retrospectively analyzed 250 chest CT scans with or without contrast enhancement and electrocardiographic gating from a heterogeneous population with or without aortic pathologic findings. Aortic diameters at nine locations and maximum aortic diameter were measured manually and with an algorithm (Artificial Intelligence Rad Companion Chest CT prototype, Siemens Healthineers) by using a CNN. A total of 233 examinations performed with 15 scanners from three vendors in 233 patients (median age, 65 years [IQR, 54-72 years]; 144 men) were analyzed: 68 (29%) without pathologic findings, 72 (31%) with aneurysm, 51 (22%) with dissection, and 42 (18%) with repair. No evidence of a difference was observed in maximum aortic diameter between manual and automatic measurements (P = .48). Overall measurements displayed a bias of -1.5 mm and a coefficient of repeatability of 8.0 mm at Bland-Altman analyses. Contrast enhancement, location, pathologic finding, and positioning inaccuracy negatively influenced reproducibility (P < .003). Sites with dissection or repair showed lower agreement than did sites without. The CNN performed well in measuring thoracic aortic diameters in a heterogeneous multivendor CT dataset. Keywords: CT, Vascular, Aorta © RSNA, 2022.

3.
Med Phys ; 48(7): 3479-3499, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838055

RESUMO

PURPOSE: In this work, we explore the potential of region-of-interest (ROI) imaging in x-ray computed tomography (CT). Using two dynamic beam attenuator (DBA) concepts for fluence field modulation (FFM) previously developed, we investigate and evaluate the potential dose savings in comparison with current FFM technology. METHODS: ROI imaging is a special application of FFM where the bulk of x-ray radiation is propagated toward a certain anatomical target (ROI), specified by the imaging task, while the surrounding tissue is spared from radiation. We introduce a criterion suitable to quantitatively describe the balance between image quality inside an ROI and total radiation dose with respect to a given ROI imaging task. It accounts for the mean image variance at the ROI and the effective patient dose calculated from Monte Carlo simulations. The criterion is further used to compile task-specific DBA trajectories determining the primary x-ray fluence, and eventually used for comparing different FFM techniques, namely the sheet-based dynamic beam attenuator (sbDBA), the z-aligned sbDBA (z-sbDBA), and an adjustable static operation mode of the z-sbDBA. Furthermore, two static bowtie filters and the influence of tube current modulation (TCM) are included in the comparison. RESULTS: Our findings demonstrate by simulations that the presented trajectory optimization method determines reasonable DBA trajectories. The influence of TCM is strongly depending on the imaging task. The narrow bowtie filter allows for dose reductions of about 10% compared to the regular bowtie filter in the considered ROI imaging tasks. The DBAs are shown to realize substantially larger dose reductions. In our cardiac imaging scenario, the DBAs can reduce the effective dose by about 30% (z-sbDBA) or 60% (sbDBA). We can further verify that the noise characteristics are not adversely affected by the DBAs. CONCLUSION: Our research demonstrates that ROI imaging using the presented DBA concepts is a promising technique toward a more patient- and task-specific CT imaging requiring lower radiation dose. Both the sbDBA and the z-sbDBA are potential technical solutions for realizing ROI imaging in x-ray CT.


Assuntos
Tecnologia , Tomografia Computadorizada por Raios X , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Raios X
4.
Med Phys ; 47(10): 4827-4837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32754971

RESUMO

PURPOSE: We present a new concept for dynamic fluence field modulation (FFM) in x-ray computed tomography (CT). The so-called z-aligned sheet-based dynamic beam attenuator (z-sbDBA) is developed to dynamically compensate variations in patient attenuation across the fan beam and the projection angle. The goal is to enhance image quality and to reduce patient radiation dose. METHODS: The z-sbDBA consists of an array of attenuation sheets aligned along the z direction. In neutral position, the array is focused toward the focal spot. Tilting the z-sbDBA defocuses the sheets, thus reducing the transmission for larger fan beam angles. The structure of the z-sbDBA significantly differs from the previous sheet-based dynamic beam attenuator (sbDBA) in two features: (a) The sheets of the z-sbDBA are aligned parallel to the detector rows, and (b) the height of the sheets increases from the center toward larger fan beam angles. We built a motor actuated prototype of the z-sbDBA integrated into a clinical CT scanner. In experiments, we investigated its feasibility for FFM. We compared the z-sbDBA to common CT bowtie filters in terms of the spectral dependency of the transmission and possible image variance distribution in reconstructed phantom images. Additionally, the potential radiation dose saving using z-sbDBA for region-of-interest (ROI) imaging was studied. RESULTS: Our experimental results confirm that the z-sbDBA can realize variable transmission profiles of the radiation fluence by only small tilts. Compared to the sbDBA, the z-sbDBA can mitigate some practical and mechanical issues. In comparison to bowtie filters, the spectral dependency is considerably reduced when using the z-sbDBA. Likewise, more homogeneous image variance distributions can be attained in reconstructed phantom images. The z-sbDBA allows controlling the spatial image variance distribution which makes it suitable for ROI imaging. Our comparison on ROI imaging reveals skin dose reductions of up to 35% at equal ROI image quality by using the z-sbDBA. CONCLUSION: Our new concept for FFM in x-ray CT, the z-sbDBA, was experimentally validated on a clinical CT scanner. It facilitates dynamic FFM by realizing variable transmission profiles across the fan beam angle on a projection-wise basis. This key feature allows for substantial improvements in image quality, a reduction in patient radiation dose, and additionally provides a technical solution for ROI imaging.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Doses de Radiação , Raios X
5.
Med Phys ; 46(12): 5528-5537, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31348527

RESUMO

PURPOSE: It has been a long-standing wish in computed tomography (CT) to compensate the emitted x-ray beam intensity for the patient's changing attenuation during the rotation of a CT data acquisition. The patient attenuation changes both spatially, along the fan beam angle, and temporally, between different projections. By modifying the pre-patient x-ray intensity profile according to the attenuation properties of the given object, image noise can be homogenized and dose can be delivered where it is really needed. Current state-of-the-art bowtie filters are not capable of changing attenuation profiles during the CT data acquisition. In our work, we present the sheet-based dynamic beam attenuator (sbDBA), a novel technical concept enabling dynamic shaping of the transmission profile. METHODS: The sbDBA consists of an array of closely spaced, highly attenuating metal sheets, focused toward the focal spot. Intensity modulation can be achieved by controlled defocusing of the array such that the attenuation of the x-ray fan beam depends on the fan angle. The sbDBA concept was evaluated in Monte-Carlo (MC) simulations regarding its spectral and scattering properties. A prototype of the sbDBA was installed in a clinical CT scanner and measurements evaluating the feasibility and the performance of the sbDBA concept were carried out. RESULTS: Experimental measurements on a CT scanner demonstrate the ability of the sbDBA to produce an attenuation profile that can be changed in width and location. Furthermore, the sbDBA shows constant transmission properties at various tube voltages. A small effect of the flying focal spot (FFS) position on the transmission profile can be observed. MC simulations confirm the essential properties of the sbDBA: In contrast to conventional bowtie filters, the sbDBA has almost no impact on the energy spectrum of the beam and there is negligible scatter emission toward the patient. CONCLUSIONS: A new concept for dynamic beam attenuation has been presented and its ability to dynamically shape the transmission profile has successfully been demonstrated. Advantages compared to regular bowtie filters including the lack of filter-induced beam hardening and scatter have been confirmed. The novel concept of a DBA paves the way toward region of interest (ROI) imaging and further reductions in patient dose.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Espalhamento de Radiação , Software
6.
IEEE Trans Radiat Plasma Med Sci ; 3(1): 31-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33829118

RESUMO

Optimal treatment planning for radioembolization of hepatic cancers produces sufficient dose to tumors for control and dose to normal liver parenchyma that is below the threshold for toxicity. The non-uniform distribution of particles in liver microanatomy complicates the planning process as different functional regions receive different doses. Having realistic and patient-specific models of the arterial tree and microsphere trapping would be useful for developing more optimal treatment plans. We propose a macrocell-based growth method to generate models of the hepatic arterial tree from the proper hepatic artery to the terminal arterioles supplying the capillaries in the parenchyma. We show how these trees can be adapted to match patient values of pressure, flow, and vessel diameters while still conforming to laws controlling vessel bifurcation, changes in pressure, and blood flow. We also introduce a method to model particle transport within the tree that accounts for vessel and particle diameter distributions and show the non-uniform microsphere deposition pattern that results. Potential applications include investigating dose heterogeneity and microsphere deposition patterns.

7.
Invest Radiol ; 53(12): 728-735, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30015677

RESUMO

OBJECTIVE: The aim of this study was to compare the effects of combined virtual monoenergetic extrapolation (VME) of dual-energy computed tomography data and iterative metal artifact reduction (iMAR) at higher photon energies on low- and high-density metal artifacts and overall image quality of the ankle arthroplasty implants with iMAR, weighted filtered back projection (WFBP), and WFBP-based VME. MATERIALS AND METHODS: Total ankle arthroplasty implants in 6 human cadaver ankles served as surrogates for arthroplasty implants. All specimens underwent computed tomography with a 2 × 192-slice dual-source computed tomography scanner at tube voltages of 80 and tin-filtered 150 kVp to produce mixed 120 kVp equivalent polychromatic and virtual monoenergetic extrapolated images at 150 and 190 keV (VME 150 and VME 190, respectively). By implementing the WFBP and iMAR reconstruction algorithms on polychromatic, VME 150 and VME 190 data, 6 image datasets were created: WFBP-Polychromatic, iMAR-Polychromatic, WFBP-VME 150, WFBP-VME 190, iMAR-VME 150, and iMAR-VME 190. High-density and low-density artifacts were separately quantified with a threshold-based computer algorithm. After anonymization and randomization, 2 observers independently ranked the datasets for overall image quality. Repeated measures analysis of variance, Friedman, and Cohen weighted κ tests were applied for statistical analysis. A conservative P value of less than 0.001 was considered statistically significant. RESULTS: iMAR-VME 190 keV and iMAR-VME 150 keV created the least amount of high-density artifacts (all P < 0.001), whereas iMAR-Polychromatic was the most effective method to mitigate low-density streaks (P < 0.001). For low- and high-density artifacts, polychromatic iMAR acquisition was superior to WFBP-VME 150 keV and WFBP-VME 190 keV (all P < 0.001). On sharp kernel reconstructions, readers ranked the overall image quality of iMAR-Polychromatic images highest (all P < 0.001). Similarly, on soft tissue kernel reconstructions, readers ranked iMAR-Polychromatic images highest with a statistically significant difference over other techniques (all P < 0.001), except for iMAR-VME 150 keV (P = 0.356). CONCLUSIONS: In computed tomography imaging of ankle arthroplasty implants, iMAR reconstruction results in fewer metal artifacts and better image quality than WFBP reconstruction for both polychromatic and virtual monoenergetic data. The combination of iMAR and VME at higher photon energies results in mixed effects on implant-induced metal artifacts, including decreased high-density and increased low-density artifacts, which in combination does not improve image quality over iMAR reconstruction of the polychromatic data. Our results suggest that, for ankle arthroplasty implants, the highest image quality is obtained by iMAR reconstruction of the polychromatic data without the need to implement VME at high-energy levels.


Assuntos
Artroplastia de Substituição do Tornozelo/instrumentação , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Metais , Próteses e Implantes , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Articulação do Tornozelo/diagnóstico por imagem , Cadáver , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Fótons
8.
IEEE Trans Med Imaging ; 37(3): 680-692, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28809677

RESUMO

The four-dimensional (4-D) eXtended CArdiac-Torso (XCAT) series of phantoms was developed to provide accurate computerized models of the human anatomy and physiology. The XCAT series encompasses a vast population of phantoms of varying ages from newborn to adult, each including parameterized models for the cardiac and respiratory motions. With great flexibility in the XCAT's design, any number of body sizes, different anatomies, cardiac or respiratory motions or patterns, patient positions and orientations, and spatial resolutions can be simulated. As such, the XCAT phantoms are gaining a wide use in biomedical imaging research. There they can provide a virtual patient base from which to quantitatively evaluate and improve imaging instrumentation, data acquisition, techniques, and image reconstruction and processing methods which can lead to improved image quality and more accurate clinical diagnoses. The phantoms have also found great use in radiation dosimetry, radiation therapy, medical device design, and even the security and defense industry. This review paper highlights some specific areas in which the XCAT phantoms have found use within biomedical imaging and other fields. From these examples, we illustrate the increasingly important role that computerized phantoms and computer simulation are playing in the research community.


Assuntos
Imageamento Tridimensional , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Simulação por Computador , Humanos , Radiometria
9.
Phys Med ; 42: 127-134, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29173905

RESUMO

The new PET tracer, 18F-flurpiridaz, with high myocardial extraction allows quantitative myocardial blood flow (MBF) estimation from dynamic PET data and tracer kinetic modeling. The goal of this study is to determine the optimal imaging protocols and parameters using a realistic simulation study. The time activity curves (TACs) of different tissue organs from a 30-s infusion time (IT) of 18F-flurpiridaz in a dynamic PET study were extracted from a previous study. The TACs at different time points were incorporated in a series of realistic 3D XCAT phantoms from which the parameters of a 2-compartment model and the 'true' MBF of 18F-flurpiridaz were determined. The compartmental model was used to generate TACs from 7 additional ITs. PET projection data from the XCAT phantoms were generated using Monte Carlo simulation. They were reconstructed using an OS-EM reconstruction algorithm with different update number (N) to obtain dynamic PET images. The blood and myocardial TACs were derived from the dynamic images from which the MBF and %MBF error was estimated. The %MBF error decreases with increasing N of the OS-EM and levels off after ∼42. The 30-s IT gave the smallest %MBF error that decreases from ∼0.57% to ∼19.40%. The MBF for 2-min, 4-min, 8-min and 16-min IT were statistically significant different from the MBF for 30-s IT (P<0.05). Too fast or too slow infusion time gave higher %MBF error. The optimal imaging protocol in dynamic 18F-flurpiridaz PET for accurate quantitative MBF estimation was 30-s IT and N of ∼42 for the OS-EM.


Assuntos
Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Coração/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons/métodos , Piridazinas , Compostos Radiofarmacêuticos , Algoritmos , Animais , Simulação por Computador , Vasos Coronários/fisiologia , Humanos , Modelos Biológicos , Método de Monte Carlo , Imagem de Perfusão do Miocárdio/instrumentação , Miocárdio/metabolismo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/instrumentação , Piridazinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Fluxo Sanguíneo Regional , Sus scrofa , Fatores de Tempo
10.
Med Phys ; 44(9): 4677-4686, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639400

RESUMO

PURPOSE: This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. METHODS: We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. RESULTS: The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77 ± 0.98, P < 0.01) and the improvement by the score of + 0.69 seemed clinically relevant. Inter-observer concordance was good: The inter-class correlation coefficient was 0.63 and Kendall's rank correlation coefficients were in the range of 0.41-0.67 (P < 0.01), respectively. Intra-observer reproducibility between sessions was good with the inter-class correlation coefficient of 0.76. CONCLUSION: We have proposed iME2 method for CT-CFA with two CT scans. The observer study verified the robustness and accuracy of iME2 method and its improved performance over iME1 method.


Assuntos
Algoritmos , Angiografia Coronária , Tomografia Computadorizada por Raios X , Artefatos , Humanos , Movimento (Física) , Doses de Radiação , Reprodutibilidade dos Testes
11.
Magn Reson Med ; 76(2): 663-78, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26479724

RESUMO

PURPOSE: Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing three-dimensional (3D) analytical phantoms are unable to accurately model shapes of biomedical interest. The goal of this study was to demonstrate that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. METHODS: The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D and two-dimensional (2D) MRI acquisitions was described. RESULTS: Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D and 2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing compared with equivalent voxelized/rasterized phantoms. CONCLUSION: Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. Magn Reson Med 76:663-678, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Biomimética/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Imagens de Fantasmas , Animais , Simulação por Computador , Análise de Fourier , Humanos , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Med Phys ; 42(9): 5329-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328982

RESUMO

PURPOSE: Newly developed spectral computed tomography (CT) such as photon counting detector CT enables more accurate tissue-type identification through material decomposition technique. Many iterative reconstruction methods, including those developed for spectral CT, however, employ a regularization term whose penalty transition is designed using pixel value of CT image itself. Similarly, the tissue-type identification methods are then applied after reconstruction; thus, it is impossible to take into account probability distribution obtained from projection likelihood. The purpose of this work is to develop comprehensive image reconstruction and tissue-type identification algorithm which improves quality of both reconstructed image and tissue-type map. METHODS: The authors propose a new framework to jointly perform image reconstruction, material decomposition, and tissue-type identification for photon counting detector CT by applying maximum a posteriori estimation with voxel-based latent variables for the tissue types. The latent variables are treated using a voxel-based coupled Markov random field to describe the continuity and discontinuity of human organs and a set of Gaussian distributions to incorporate the statistical relation between the tissue types and their attenuation characteristics. The performance of the proposed method is quantitatively compared to that of filtered backprojection and a quadratic penalized likelihood method by 100 noise realization. RESULTS: Results showed a superior trade-off between image noise and resolution to current reconstruction methods. The standard deviation (SD) and bias of reconstructed image were improved from quadratic penalized likelihood method: bias, -0.9 vs -0.1 Hounsfield unit (HU); SD, 46.8 vs 27.4 HU. The accuracy of tissue-type identification was also improved from quadratic penalized likelihood method: 80.1% vs 86.9%. CONCLUSIONS: The proposed method makes it possible not only to identify tissue types more accurately but also to reconstruct CT images with decreased noise and enhanced sharpness owing to the information about the tissue types.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fótons , Tomografia Computadorizada por Raios X/métodos , Humanos , Imagens de Fantasmas
13.
Phys Med Biol ; 60(7): 2881-901, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25776521

RESUMO

Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Área Sob a Curva , Simulação por Computador , Alemanha , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Curva ROC , Doses de Radiação , Razão Sinal-Ruído
14.
Phys Med ; 31(2): 159-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25555904

RESUMO

The value of Tc-99m MIBI parathyroid SPECT for localizing parathyroid hyperplasia in chronic renal failure patients remains inconclusive due to limited image quality. Advanced reconstruction methods to improve image quality have been developed but require optimization and evaluation. The goal of this study was to optimize and evaluate compensation methods and reconstruction parameters for Tc-99m MIBI parathyroid SPECT. A phantom population and projection data that modelled clinically realistic variations found in patients were simulated. The 3D OS-EM reconstruction with compensation for attenuation, detector response and scatter in various combinations were studied. For each compensation, the number of updates for OS-EM and the cutoff frequency of a 3D Butterworth filter were optimized and evaluated using anthropomorphic model observer. With optimal parameters, the method with compensation for attenuation and detector response, with or without the addition of scatter compensation, provided the highest lesion detectability for Tc-99m MIBI parathyroid SPECT.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Glândulas Paratireoides/diagnóstico por imagem , Tecnécio Tc 99m Sestamibi , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Área Sob a Curva , Feminino , Humanos , Masculino , Doenças das Paratireoides/diagnóstico por imagem , Imagens de Fantasmas , Curva ROC
15.
J Biomech Eng ; 137(5): 051004, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25367177

RESUMO

This paper describes the process in which complex lesion geometries (specified by computer generated perfusion defects) are incorporated in the description of nonlinear finite element (FE) mechanical models used for specifying the motion of the left ventricle (LV) in the 4D extended cardiac torso (XCAT) phantom to simulate gated cardiac image data. An image interrogation process was developed to define the elements in the LV mesh as ischemic or infarcted based upon the values of sampled intensity levels of the perfusion maps. The intensity values were determined for each of the interior integration points of every element of the FE mesh. The average element intensity levels were then determined. The elements with average intensity values below a user-controlled threshold were defined as ischemic or infarcted depending upon the model being defined. For the infarction model cases, the thresholding and interrogation process were repeated in order to define a border zone (BZ) surrounding the infarction. This methodology was evaluated using perfusion maps created by the perfusion cardiac-torso (PCAT) phantom an extension of the 4D XCAT phantom. The PCAT was used to create 3D perfusion maps representing 90% occlusions at four locations (left anterior descending (LAD) segments 6 and 9, left circumflex (LCX) segment 11, right coronary artery (RCA) segment 1) in the coronary tree. The volumes and shapes of the defects defined in the FE mechanical models were compared with perfusion maps produced by the PCAT. The models were incorporated into the XCAT phantom. The ischemia models had reduced stroke volume (SV) by 18-59 ml. and ejection fraction (EF) values by 14-50% points compared to the normal models. The infarction models, had less reductions in SV and EF, 17-54 ml. and 14-45% points, respectively. The volumes of the ischemic/infarcted regions of the models were nearly identical to those volumes obtained from the perfusion images and were highly correlated (R² = 0.99).


Assuntos
Circulação Coronária , Análise de Elementos Finitos , Ventrículos do Coração/fisiopatologia , Fenômenos Mecânicos , Modelos Cardiovasculares , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Fenômenos Biomecânicos , Tomografia Computadorizada por Emissão de Fóton Único de Sincronização Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Isquemia Miocárdica/diagnóstico por imagem , Dinâmica não Linear , Imagens de Fantasmas
16.
Phys Med Biol ; 59(12): 2935-53, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24841729

RESUMO

Digital phantoms and Monte Carlo (MC) simulations have become important tools for optimizing and evaluating instrumentation, acquisition and processing methods for myocardial perfusion SPECT (MPS). In this work, we designed a new adult digital phantom population and generated corresponding Tc-99m and Tl-201 projections for use in MPS research. The population is based on the three-dimensional XCAT phantom with organ parameters sampled from the Emory PET Torso Model Database. Phantoms included three variations each in body size, heart size, and subcutaneous adipose tissue level, for a total of 27 phantoms of each gender. The SimSET MC code and angular response functions were used to model interactions in the body and the collimator-detector system, respectively. We divided each phantom into seven organs, each simulated separately, allowing use of post-simulation summing to efficiently model uptake variations. Also, we adapted and used a criterion based on the relative Poisson effective count level to determine the required number of simulated photons for each simulated organ. This technique provided a quantitative estimate of the true noise in the simulated projection data, including residual MC simulation noise. Projections were generated in 1 keV wide energy windows from 48-184 keV assuming perfect energy resolution to permit study of the effects of window width, energy resolution, and crosstalk in the context of dual isotope MPS. We have developed a comprehensive method for efficiently simulating realistic projections for a realistic population of phantoms in the context of MPS imaging. The new phantom population and realistic database of simulated projections will be useful in performing mathematical and human observer studies to evaluate various acquisition and processing methods such as optimizing the energy window width, investigating the effect of energy resolution on image quality and evaluating compensation methods for degrading factors such as crosstalk in the context of single and dual isotope MPS.


Assuntos
Imagem de Perfusão do Miocárdio/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Adulto , Feminino , Humanos , Masculino , Método de Monte Carlo
17.
Med Phys ; 40(5): 051907, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635277

RESUMO

PURPOSE: To develop an easily-implemented technique with free publicly-available analysis software to measure the modulation transfer function (MTF) and noise-power spectrum (NPS) of a clinical computed tomography (CT) system from images acquired using a widely-available and standardized American College of Radiology (ACR) CT accreditation phantom. METHODS: Images of the ACR phantom were acquired on a Siemens SOMATOM Definition Flash system using a standard adult head protocol: 120 kVp, 300 mAs, and reconstructed voxel size of 0.49 mm × 0.49 mm × 4.67 mm. The radial (axial) MTF was measured using an edge method where the boundary of the third module of the ACR phantom, originally designed to measure uniformity and noise, was used as a circular edge. The 3D NPS was measured using images from this same module and using a previously-described methodology that quantifies noise magnitude and 3D noise correlation. RESULTS: The axial MTF was radially symmetrical and had a value of 0.1 at 0.62 mm(-1). The 3D NPS shape was consistent with the filter-ramp function of filtered-backprojection reconstruction algorithms and previously reported values. The radial NPS peak value was ∼115 HU(2)mm(3) at ∼0.25 mm(-1) and dropped to 0 HU(2)mm(3) by 0.8 mm(-1). CONCLUSIONS: The authors have developed an easily-implementable technique to measure the axial MTF and 3D NPS of clinical CT systems using an ACR phantom. The widespread availability of the phantom along with the free software the authors have provided will enable many different institutions to immediately measure MTF and NPS values for comparison of protocols and systems.


Assuntos
Acreditação , Imagens de Fantasmas , Sociedades Médicas , Tomografia Computadorizada por Raios X/instrumentação , Adulto , Humanos , Razão Sinal-Ruído
18.
J Nucl Cardiol ; 20(1): 84-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151753

RESUMO

BACKGROUND: Partial volume effects (PVEs) in PET imaging result in incorrect regional activity estimates due to both spill-out and spill-in from activity in neighboring regions. It is important to compensate for both effects to achieve accurate quantification. In this study, an image-based partial volume compensation (PVC) method was developed and validated for cardiac PET. METHODS AND RESULTS: The method uses volume-of-interest (VOI) maps segmented from contrast-enhanced CTA images to compensate for both spill-in and spill-out in each VOI. The PVC method was validated with simulation studies and also applied to images of dog cardiac perfusion PET data. The PV effects resulting from cardiac motion and myocardial uptake defects were investigated and the efficacy of the proposed PVC method in compensating for these effects was evaluated. RESULTS: Results indicate that the magnitude and the direction of PVEs in cardiac imaging change over time. This affects the accuracy of activity distributions estimates obtained during dynamic studies. The defect regions have different PVEs as compared to the normal myocardium. Cardiac motion contributes around 10% to the PVEs. PVC effectively removed both spill-in and spill-out in cardiac imaging. CONCLUSIONS: PVC improved left ventricular wall uniformity and quantitative accuracy. The best strategy for PVC was to compensate for the PVEs in each cardiac phase independently and treat severe uptake defects as independent regions from the normal myocardium.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/patologia , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Encéfalo/patologia , Simulação por Computador , Cães , Humanos , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo , Função Ventricular Esquerda
19.
AJR Am J Roentgenol ; 198(6): 1380-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22623552

RESUMO

OBJECTIVE: The aim of this in vitro study was to examine the capability of three protocols of dual-energy CT imaging in distinguishing calcium oxalate, calcium phosphate, and uric acid kidney stones. MATERIALS AND METHODS: A total of 48 calcium oxalate, calcium phosphate, and uric acid human kidney stone samples were placed in individual containers inside a cylindric water phantom and imaged with a dual-energy CT scanner using the following three scanning protocols of different combinations of tube voltage, with and without a tin filter: 80 and 140 kVp without a tin filter, 100 and 140 kVp with a tin filter, and 80 and 140 kVp with a tin filter. The mean attenuation value (in Hounsfield units) of each stone was recorded in both low- and high-energy CT images in each protocol. The dual-energy ratio of the mean attenuation values of each stone was computed for each protocol. RESULTS: For all three protocols, the uric acid stones were significantly different (p < 0.001) from the calciferous stones according to their dual-energy ratio values. For differentiating calcium oxalate and calcium phosphate stones, the difference between their dual-energy ratio values was statistically significant, with different degrees of significance (range, p < 0.001 to p = 0.03) for all three protocols. On the basis of the values of the area under receiver operating characteristic curve (AUC) of calcified stone differentiation, the three protocols were ranked in the following order: the 80- and 140-kVp tin filter protocol (AUC, 0.996), the 100- and 140-kVp tin filter protocol (AUC, 0.918), and the 80- and 140-kVp protocol (AUC, 0.871). CONCLUSION: The tin filter added to the high-energy tube and the use of a wider dual-energy difference are important for improving the stone differentiation capability of dual-energy CT imaging.


Assuntos
Cálculos Renais/química , Cálculos Renais/diagnóstico por imagem , Estanho , Tomografia Computadorizada por Raios X/instrumentação , Análise de Variância , Oxalato de Cálcio/análise , Fosfatos de Cálcio/análise , Humanos , Técnicas In Vitro , Imagens de Fantasmas , Curva ROC , Ácido Úrico/análise
20.
Ann Nucl Med ; 26(1): 1-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22069195

RESUMO

Coronary artery disease and its related cardiac disorders represent the most common cause of death in the USA and Western world. Despite advancements in treatment and accompanying improvements in outcome with current diagnostic and therapeutic modalities, it is the correct assignment of these diagnostic techniques and treatment options which are crucial. From a diagnostic standpoint, SPECT myocardial perfusion imaging (MPI) using traditional radiotracers like thallium-201 chloride, Tc-99m sestamibi or Tc-99m tetrofosmin is the most utilized imaging technique. However, PET MPI using N-13 ammonia, rubidium-82 chloride or O-15 water is increasing in availability and usage as a result of the growing number of medical centers with new-generation PET/CT systems taking advantage of the superior imaging properties of PET over SPECT. The routine clinical use of PET MPI is still limited, in part because of the short half-life of conventional PET MPI tracers. The disadvantages of these conventional PET tracers include expensive onsite production and inconvenient on-scanner tracer administration making them unsuitable for physical exercise stress imaging. Recently, two F-18 labeled radiotracers with longer radioactive half-lives than conventional PET imaging agents have been introduced. These are flurpiridaz F 18 (formerly known as F-18 BMS747158-02) and F-18 fluorobenzyltriphenylphosphonium. These longer half-life F-18 labeled perfusion tracers can overcome the production and protocol limitations of currently used radiotracers for PET MPI.


Assuntos
Radioisótopos de Flúor , Imagem de Perfusão do Miocárdio/métodos , Tomografia por Emissão de Pósitrons/métodos , Traçadores Radioativos , Animais , Transporte Biológico , Ensaios Clínicos como Assunto , Radioisótopos de Flúor/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...